Featured Research

from universities, journals, and other organizations

UCSD Chemists Develop Self-Assembling Silicon Particles -- A First Step Toward Robots The Size Of A Grain Of Sand

Date:
August 26, 2003
Source:
University Of California, San Diego
Summary:
Chemists at the University of California, San Diego have developed minute grains of silicon that spontaneously assemble, orient and sense their local environment, a first step toward the development of robots the size of sand grains that could be used in medicine, bioterrorism surveillance and pollution monitoring.

Chemists at the University of California, San Diego have developed minute grains of silicon that spontaneously assemble, orient and sense their local environment, a first step toward the development of robots the size of sand grains that could be used in medicine, bioterrorism surveillance and pollution monitoring.

In a paper to be published in September in the Proceedings of the National Academy of Sciences, which will appear in the journal’s early on-line edition this week, Michael Sailor, a professor of chemistry and biochemistry at UCSD, and Jamie Link, a graduate student in his laboratory, report the design and synthesis of tiny silicon chips, or “smart dust,” which consist of two colored mirrors, green on one side and red on the other. Each mirrored surface is modified to find and stick to a desired target, and to adjust its color slightly to let the observer know what it has found.

“This is a key development in what we hope will one day make possible the development of robots the size of a grain of sand,” Sailor explains. “The vision is to build miniature devices that can move with ease through a tiny environment, such as a vein or an artery, to specific targets, then locate and detect chemical or biological compounds and report this information to the outside world. Such devices could be used to monitor the purity of drinking or sea water, to detect hazardous chemical or biological agents in the air or even to locate and destroy tumor cells in the body.”

To create the smart dust, the researchers use chemicals to etch one side of a silicon chip, similar to the chips used in computers, generating a colored mirrored surface with tiny pores. They make this porous surface water repellent, or hydrophobic, by allowing a chemical that is hydrophobic to bind to it. They then etch the other side of the chip to create a porous reflective surface of a different color and expose the surface to air so that it becomes hydrophilic, or attractive to water.

Using vibrations, they can break the chip into tiny pieces, each about the size of the diameter of a human hair. Each piece is now a tiny sensor with opposite surfaces that are different colors, with one attracted to water and one repelled by water and attracted to oily substances.

When added to water, the “dust” will align with the hydrophilic side facing the surface of the water and the hydrophobic side facing toward the air. If a drop of an oily substance is added to the water, the dust surrounds the drop with the hydrophobic side facing inward. In addition to this alignment, which will occur in the presence of any substance that is insoluble in water, a slight color change occurs in the hydrophobic mirror. The degree of this color change depends on the identity of the insoluble substance. The color change occurs as some of the oily liquid enters the tiny pores on the hydrophobic side of the silicon particle.

“As the particle comes in contact with the oil drop, some of the liquid from the target is absorbed into it,” Sailor explains. “The liquid only wicks into the regions of the particle that have been modified chemically. The presence of the liquid in the pores causes a predictable change in the color code, signaling to the outside observer that the correct target has been located.”

The hydrophilic side of the chip behaves in a similar way; it changes color according to the identity of the hydrophilic liquid it contacts. While each individual particle is too small to observe the color code, the collective behavior of the particles facilitates the detection of the signal.

This research effort, funded by the National Science Foundation and the Air Force Office of Scientific Research, builds on previous work by the Sailor group to develop various types of sensing devices from silicon chips. A year ago, the group reported the development of silicon particles with a single sensing surface.

Link, the first author on the paper, says the dual-sided particles have the additional benefit of being able to collect at a target and then self-assemble into a larger, more visible reflector that can be seen from a distance. “The collective signal from this aggregate of hundreds or thousands of tiny mirrors is much stronger and more easily detected than that from a single mirror,” she points out. “The tendency of these particles to clump together will therefore enable us to use this technology for remote sensing applications.”


Story Source:

The above story is based on materials provided by University Of California, San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University Of California, San Diego. "UCSD Chemists Develop Self-Assembling Silicon Particles -- A First Step Toward Robots The Size Of A Grain Of Sand." ScienceDaily. ScienceDaily, 26 August 2003. <www.sciencedaily.com/releases/2003/08/030826065407.htm>.
University Of California, San Diego. (2003, August 26). UCSD Chemists Develop Self-Assembling Silicon Particles -- A First Step Toward Robots The Size Of A Grain Of Sand. ScienceDaily. Retrieved September 18, 2014 from www.sciencedaily.com/releases/2003/08/030826065407.htm
University Of California, San Diego. "UCSD Chemists Develop Self-Assembling Silicon Particles -- A First Step Toward Robots The Size Of A Grain Of Sand." ScienceDaily. www.sciencedaily.com/releases/2003/08/030826065407.htm (accessed September 18, 2014).

Share This



More Matter & Energy News

Thursday, September 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Stocks Hit All-Time High as Fed Holds Steady

Stocks Hit All-Time High as Fed Holds Steady

AP (Sep. 17, 2014) The Federal Reserve signaled Wednesday that it plans to keep a key interest rate at a record low because a broad range of U.S. economic measures remain subpar. Stocks hit an all-time high on the news. (Sept. 17) Video provided by AP
Powered by NewsLook.com
Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins