Featured Research

from universities, journals, and other organizations

Chromosomes Are 'Nibbled' Before They Fuse, Researchers Report

Date:
December 3, 2003
Source:
Johns Hopkins Medical Institutions
Summary:
Overturning 60 years of scientific presumption, new evidence from Johns Hopkins scientists shows that enzymes nibble away at chromosomes when the chromosomes' protective tips, called telomeres, get too short.

Overturning 60 years of scientific presumption, new evidence from Johns Hopkins scientists shows that enzymes nibble away at chromosomes when the chromosomes' protective tips, called telomeres, get too short.

Much like the plastic tips on shoelaces, telomeres protect the ends of chromosomes. When telomeres get too short, cells usually die. If they don't, the unprotected ends drag the chromosomes through an ugly assortment of fusions that lead to rearrangements, deletions and insertions that scramble the cell's genetic material and can lead to cancer. Until now, scientists had presumed that the fusions were the first thing to happen when telomeres stop protecting the chromosomes.

"We have always thought that if we can understand how shortened telomeres create genomic instability, we might be able to find targets in that process to push abnormal cells toward death and away from trying to repair themselves," says Carol Greider, Ph.D., professor and director of molecular biology and genetics at the Johns Hopkins School of Medicine. "Now it turns out that what we've always thought was the first step in the process is not the first step at all."

Writing in the December issue of Molecular and Cellular Biology, Greider and Hopkins graduate student Jennifer Hackett describe experiments with yeast which revealed that instead of just sticking, or fusing, end-to-end, chromosomes whose telomeres are too short are first nibbled by enzymes that normally clean up broken chromosomes.

"The fusion pathway was our favorite model of what goes wrong first when telomeres get too short. All the papers use that model to describe how loss of telomere function causes genomic instability," says Greider. "But just because we see a lot of something, doesn't mean it's the first thing that happens. We were quite surprised to find that fusion isn't the first effect of short telomeres."

In the traditional fusion scenario, officially called the "breakage-fusion-bridge" pathway, a cell interprets chromosomes with short telomeres as being broken, and sets in motion machinery to "fix" the break by fusing it to another exposed end. The unintended consequence of this fix is the connection of two chromosomes. If the fused chromosomes are pulled to opposite sides of a dividing cell, they form a bridge that breaks randomly as the cell divides, and the process begins again.

To test whether this was the correct or only scenario, Hackett inserted genetic markers into a yeast chromosome to reveal where genetic damage most often occurs when telomeres got too short. Instead of random damage, she discovered that the marker at the very end of the chromosome was most likely to be lost, and the marker closest to the chromosome's center the least likely.

"If fusion and breakage was the primary mechanism of gene loss, the pattern of loss would have been random -- each marker would have been just as likely as the others to be lost," explains Greider. "The marker loss we saw was not at all random, so we knew some other mechanism was at work."

Then, Hackett studied the engineered chromosomes in yeast missing an enzyme called exonuclease that normally recognizes and chews up broken chromosomes one strand of DNA at a time. Without the enzyme there were fewer chromosome rearrangements, offering strong evidence that this enzyme is doing the damage.

"Fusion happens, but it's not the primary mechanism that triggers gene loss after telomeres get too short," says Greider. "Instead, exonuclease activity causes the bulk of immediate gene loss."

To prove that fusion does indeed result in a random pattern of marker loss, Hackett made an artificial fused, or di-centric, chromosome, complete with genetic markers to identify which segments were destroyed. Since Hackett engineered it, this fused chromosome could not already have been "nibbled" by an exonuclease.

"We demonstrated that fused chromosomes do break randomly, at which point exonucleases attack the exposed ends," says Greider. "Fusion is a big part of what leads to major genomic instability when telomeres aren't working, but it's not the initial problem. Our discovery should spark researchers in the field to think along new lines."

Greider cautions that they still need to verify that the same mechanism is to blame for genomic instability in mammalian cells as in yeast. If so, identifying other proteins that work with exonucleases may offer a target to block the process and push cells in cancer toward death instead of genomic instability.

###

Hackett is now a postdoctoral fellow at Harvard Medical School. Hackett was funded by the Johns Hopkins Predoctoral Training Program in Human Genetics and Molecular Biology and the National Science Foundation. The studies were funded by the National Institute of General Medical Sciences, part of the National Institutes of Health.

On the Web: http://mcb.asm.org/


Story Source:

The above story is based on materials provided by Johns Hopkins Medical Institutions. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins Medical Institutions. "Chromosomes Are 'Nibbled' Before They Fuse, Researchers Report." ScienceDaily. ScienceDaily, 3 December 2003. <www.sciencedaily.com/releases/2003/12/031203075629.htm>.
Johns Hopkins Medical Institutions. (2003, December 3). Chromosomes Are 'Nibbled' Before They Fuse, Researchers Report. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2003/12/031203075629.htm
Johns Hopkins Medical Institutions. "Chromosomes Are 'Nibbled' Before They Fuse, Researchers Report." ScienceDaily. www.sciencedaily.com/releases/2003/12/031203075629.htm (accessed September 23, 2014).

Share This



More Health & Medicine News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Costs Keep Mounting

Ebola Costs Keep Mounting

Reuters - Business Video Online (Sep. 23, 2014) The WHO has warned up to 20,000 people could be infected with Ebola over the next few weeks. As Sonia Legg reports, the implications for the West African countries suffering from the disease are huge. Video provided by Reuters
Powered by NewsLook.com
Ebola Cases Could Reach 1.4 Million Within 4 Months

Ebola Cases Could Reach 1.4 Million Within 4 Months

Newsy (Sep. 23, 2014) Health officials warn that without further intervention, the number of Ebola cases in Liberia and Sierra Leone could reach 1.4 million by January. Video provided by Newsy
Powered by NewsLook.com
WHO: Ebola Cases to Triple in Weeks Without Drastic Action

WHO: Ebola Cases to Triple in Weeks Without Drastic Action

AFP (Sep. 23, 2014) The number of Ebola infections will triple to 20,000 by November, soaring by thousands every week if efforts to stop the outbreak are not stepped up radically, the WHO warned in a study on Tuesday. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
5 Ways Men Can Prevent Most Heart Attacks

5 Ways Men Can Prevent Most Heart Attacks

Newsy (Sep. 23, 2014) No surprise here: A recent study says men can reduce their risk of heart attack by maintaining a healthy lifestyle, which includes daily exercise. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins