Featured Research

from universities, journals, and other organizations

Zooming In On A Proton Packed With Surprises

Date:
December 5, 2003
Source:
Thomas Jefferson National Accelerator Facility
Summary:
The structure of the proton is under the microscope at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, where a series of experiments continues to produce unexpected results.

The structure of the proton is under the microscope at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, where a series of experiments continues to produce unexpected results. Simple theories of proton structure say that the way electric charge is distributed in the proton is the same as the magnetization distribution. But Jefferson Lab results indicate these distributions are definitely different.

Related Articles


A fundamental goal of nuclear physics is to understand the structure and behavior of strongly interacting matter in terms of its building blocks, quarks and gluons. An important step toward this goal is a description of the internal structure for the proton and neutron, collectively known as nucleons. Jefferson Lab was built, in part, to study the physics of quarks and gluons and their connection to larger composite objects like protons.

The proton is the positively charged core of the hydrogen atom, the most abundant element in the universe. It is made up of three charged quarks and the gluons that bind them together. The quarks move around, so the proton has a charge distributed over its size. This leads to the generation of an electric current, which in turn induces a magnetic field. In addition, quarks and gluons both have spin, leading to a magnetic moment. The combination of the total magnetic field and the magnetic moment is a quantity called magnetization.

Jefferson Lab is uniquely positioned to measure the proton's electric charge and magnetization distributions, the so-called electromagnetic form factors that describe its internal structure.

In two recent Jefferson Lab experiments, researchers directed the accelerator's polarized electron beam toward liquid hydrogen cooled to 17 Kelvin (-429(F). Each electron in the beam has an intrinsic angular momentum, or spin. The beam of electrons is said to be "polarized" if their spins point - on average - in a specific direction. As an electron collided with a proton in the hydrogen target, the proton recoiled, becoming polarized during the interaction. The scattered electron and recoiling proton were then detected in two high-resolution spectrometers (HRS), and the proton polarization was measured by a specially developed detector called a proton polarimeter.

From these measurements, the researchers could obtain a ratio of electric charge distribution to magnetization distribution - the electric and magnetic form factors - at various depths inside the proton. Their experiments revealed unexpected and significantly different energy-dependence for the form factors. The data showed that the proton's charge distribution is not the same as its magnetization distribution; the charge distribution is more spread out than the magnetization.

These results are very interesting to both experimental and theoretical physicists. The Jefferson Lab data has already had an impact on theoretical models, helping rule out some models, directing others toward a better description of internal proton structure.

One such model was developed in 1996 by physicists Gerald A. Miller and Michael R. Frank, both from the University of Washington in Seattle, and Byron K. Jennings from TRIUMF in Vancouver. The researchers predicted a fall-off in the ratio of the electromagnetic form factors but, at the time, they didn't realize that experimental confirmation was possible. When the results of the first Jefferson Lab experiments probing proton structure were announced in 2000, the prediction was confirmed.

An interesting by-product of Miller's theory is that the proton is not necessarily spherical in shape. Depending on the angular momentum of the quarks, the proton could be spherical in shape or more like a doughnut, a pretzel or a peanut. Miller says the variety of shapes is nearly limitless, and depends on the momentum of the quarks and the angle between the spin of the quark and the spin of the proton.


Story Source:

The above story is based on materials provided by Thomas Jefferson National Accelerator Facility. Note: Materials may be edited for content and length.


Cite This Page:

Thomas Jefferson National Accelerator Facility. "Zooming In On A Proton Packed With Surprises." ScienceDaily. ScienceDaily, 5 December 2003. <www.sciencedaily.com/releases/2003/12/031205051520.htm>.
Thomas Jefferson National Accelerator Facility. (2003, December 5). Zooming In On A Proton Packed With Surprises. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2003/12/031205051520.htm
Thomas Jefferson National Accelerator Facility. "Zooming In On A Proton Packed With Surprises." ScienceDaily. www.sciencedaily.com/releases/2003/12/031205051520.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
3D Printed Cookies Just in Time for Christmas

3D Printed Cookies Just in Time for Christmas

Reuters - Innovations Video Online (Dec. 18, 2014) A tech company in Spain have combined technology with cuisine to develop the 'Foodini', a 3D printer designed to print the perfect cookie for Santa. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
First Etihad Superjumbo Flight in December

First Etihad Superjumbo Flight in December

AFP (Dec. 18, 2014) The first flight of Etihad Airways' long-awaited Airbus A380 superjumbo will take place later in December, the Abu Dhabi carrier said Thursday, also announcing its first Boeing 787 Dreamliner route. Duration: 01:09 Video provided by AFP
Powered by NewsLook.com
Ford Expands Air Bag Recall Nationwide

Ford Expands Air Bag Recall Nationwide

Newsy (Dec. 18, 2014) The automaker added 447,000 vehicles to its recall list, bringing the total to more than 502,000. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins