Featured Research

from universities, journals, and other organizations

The Measure Of Water: NASA Creates New Map For The Atmosphere

Date:
December 10, 2003
Source:
NASA/Jet Propulsion Laboratory
Summary:
NASA scientists have opened a new window for understanding atmospheric water vapor, its implications for climate change and ozone depletion.

NASA scientists have opened a new window for understanding atmospheric water vapor, its implications for climate change and ozone depletion.

Scientists have created the first detailed map of water, containing heavy hydrogen and heavy oxygen atoms, in and out of clouds, from the surface to some 25 miles above the Earth, to better understand the dynamics of how water gets into the stratosphere.

Only small amounts of water reach the arid stratosphere, 10 to 50 kilometers (6 to 25 miles) above Earth, so any increase in the water content could potentially lead to destruction of some ozone-shielding capability in this part of the atmosphere. This could produce larger ozone depletions over the North and South Poles as well as at mid-latitudes.

Water shapes Earth's climate. The large amount of it in the lower atmosphere, the troposphere, controls how much sunlight gets through to the planet, how much is trapped in our skies, and how much goes back out to space. Higher in the stratosphere, where most of the Earth's ozone shield protects the surface from harmful ultraviolet rays, there is very little water (less than .001 the surface concentration). Scientists don't fully understand how air is dried before it gets to this region.

In the troposphere, water exists as vapor in air, as liquid droplets in clouds, and as frozen ice particles in high altitude cirrus clouds. Since there is so much water closer to Earth and so little miles above, it is important to understand how water enters and leaves the stratosphere. The "isotopic content," the natural fingerprint left by the heavy forms of water, is key to understanding the process. An isotope is any of two or more forms of an element having the same or very closely related chemical properties and the same atomic number, but different atomic weights. An example is oxygen 16 versus oxygen 18, both are oxygen, but one is heavier than the other.

Heavy water is more readily condensed or frozen out from its vapor, causing the nature of its distribution to differ somewhat from the usual isotopic form of water. A measurement of the isotopic make-up of water vapor enables scientists to determine how water gets into the stratosphere.

"For the first time, we have water isotope content mapped in incredible detail," said Dr. Christopher R. Webster, a senior research scientist at NASA's Jet Propulsion Laboratory (JPL), Pasadena, Calif. Webster is principal author of a scientific paper announcing the new findings in Science Magazine today. Dr. Andrew J. Heymsfield, of the National Center for Atmospheric Research, Boulder, Colo., is co-author.

Measuring water isotopes is extremely challenging, because they represent only a small fraction, less than one percent, of the total water in the atmosphere. Detailed measurements were made using an Aircraft laser Infrared absorption spectrometer (Alias) flying aboard NASA's WB-57F high-altitude jet aircraft in July 2002. This new laser technique enables mapping of water isotopes with sufficient resolution to help researchers understand both water transport and the detailed microphysics of clouds, key parameters for understanding atmospheric composition, storm development and weather prediction.

"The laser technique gives us the ability to measure the different types of isotopes found in all water," said Webster. "With the isotopic fingerprint, we discovered the ice particles found under the stratosphere were lofted from below, and some were grown there in place."

The data help explain how the water content of air entering the stratosphere is reduced, and show that gradual ascent and rapid upward motion associated with tall cloud systems (convective lofting) both play roles in establishing the dryness of the stratosphere.

The purpose of the aircraft mission was to understand the formation, extent and processes associated with cirrus clouds. The mission used six aircraft from NASA and other federal agencies to make observations above, in and below the clouds. By combining aircraft data with ground-based data and satellites, scientists have a better picture of the relationship between clouds, water vapor and atmospheric dynamics than previously. They also can better interpret satellite measurements routinely made by NASA.

The mission was funded by NASA's Earth Science Enterprise. The Enterprise is dedicated to understanding the Earth as an integrated system and applying Earth System Science to improve prediction of climate, weather and natural hazards using the unique vantage point of space.

For more information about Alias, visit:http://laserweb.jpl.nasa.gov

For Information about NASA and JPL programs, visit:

http://www.nasa.gov & http://www.jpl.nasa.gov


Story Source:

The above story is based on materials provided by NASA/Jet Propulsion Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

NASA/Jet Propulsion Laboratory. "The Measure Of Water: NASA Creates New Map For The Atmosphere." ScienceDaily. ScienceDaily, 10 December 2003. <www.sciencedaily.com/releases/2003/12/031209080955.htm>.
NASA/Jet Propulsion Laboratory. (2003, December 10). The Measure Of Water: NASA Creates New Map For The Atmosphere. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2003/12/031209080955.htm
NASA/Jet Propulsion Laboratory. "The Measure Of Water: NASA Creates New Map For The Atmosphere." ScienceDaily. www.sciencedaily.com/releases/2003/12/031209080955.htm (accessed September 23, 2014).

Share This



More Earth & Climate News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Hundreds of Thousands Hit NYC Streets to Protest Climate Change

Hundreds of Thousands Hit NYC Streets to Protest Climate Change

AFP (Sep. 22, 2014) Celebrities, political leaders and the masses rallied in New York and across the globe demanding urgent action on climate change, with organizers saying 600,000 people hit the streets. Duration: 01:19 Video provided by AFP
Powered by NewsLook.com
French FM Urges 'powerful' Response to Global Warming

French FM Urges 'powerful' Response to Global Warming

AFP (Sep. 22, 2014) French Foreign Minister Laurent Fabius on Monday warned about the potential "catastrophe" if global warming was not dealt with in a "powerful" way. Duration: 01:08 Video provided by AFP
Powered by NewsLook.com
Ongoing Drought, Fighting Put Somalia at Risk of Famine

Ongoing Drought, Fighting Put Somalia at Risk of Famine

AFP (Sep. 22, 2014) After a year of poor rains and heavy fighting Somalia is again at risk of famine, just three years after food shortages killed 260,000 people. Duration: 01:10 Video provided by AFP
Powered by NewsLook.com
Rockefeller Oil Heirs Switching To Clean Energy

Rockefeller Oil Heirs Switching To Clean Energy

Newsy (Sep. 22, 2014) The Rockefellers — heirs to an oil fortune that made the family name a symbol of American wealth — are switching from fossil fuels to clean energy. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins