Featured Research

from universities, journals, and other organizations

Neutron Stars May Merge More Often Than Thought

Date:
December 11, 2003
Source:
Northwestern University
Summary:
A recent discovery of a double neutron-star system has helped to increase astronomers’ chances at collecting the information they need to better understand the black holes and neutron stars in our Galaxy.

EVANSTON, Ill. --- A recent discovery of a double neutron-star system has helped to increase astronomers’ chances at collecting the information they need to better understand the black holes and neutron stars in our Galaxy.

Neutron star pairs may merge and give off a burst of gravitational waves about six times more often than previously thought, scientists report in the Dec. 4 issue of the journal Nature. If so, the current generation of gravitational-wave detectors might be able to register such an event every year or two, rather than about once a decade -- the most optimistic prediction until now.

Gravitational waves were predicted by Einstein’s general theory of relativity. Astronomers have indirect evidence of their existence but have not yet detected them directly.

The revised estimate of the neutron-star merger rate springs from the discovery of a double neutron-star system, a pulsar called PSR J0737-3039 and its neutron-star companion, by a team of scientists from Italy, Australia, the United Kingdom and the United States using the 64-m CSIRO Parkes radio telescope in eastern Australia.

Vicky Kalogera, assistant professor of physics and astronomy at Northwestern University, is a member of the international team. She, along with her graduate student Chunglee Kim and colleague Duncan Lorimer from the University of Manchester, used the characteristics of the newly discovered pair of neutron stars to calculate how many more such pairs exist in our Galaxy. Next, they calculated that first-generation gravitational wave detectors, like LIGO in the United States, should be able to detect the merger of neutron stars once every year and a half.

“We know gravitational waves exist, but only from indirect evidence,” said Kalogera. “Once we can detect the gravitational waves from these merger events directly, we will have an amazing new window into the cosmos. We will learn a great deal more about relativity and the properties of astronomical objects such as neutron stars and black holes.”

Marta Burgay, a Ph.D. student at the University of Bologna in Italy is lead author on the Nature paper. Kalogera’s portion of the research was supported by the National Science Foundation’s gravitational physics program and the David and Lucile Packard Foundation.


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Cite This Page:

Northwestern University. "Neutron Stars May Merge More Often Than Thought." ScienceDaily. ScienceDaily, 11 December 2003. <www.sciencedaily.com/releases/2003/12/031211074051.htm>.
Northwestern University. (2003, December 11). Neutron Stars May Merge More Often Than Thought. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2003/12/031211074051.htm
Northwestern University. "Neutron Stars May Merge More Often Than Thought." ScienceDaily. www.sciencedaily.com/releases/2003/12/031211074051.htm (accessed October 21, 2014).

Share This



More Space & Time News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Comet Siding Spring Grazes Mars' Atmosphere

Comet Siding Spring Grazes Mars' Atmosphere

Newsy (Oct. 19, 2014) A comet from the farthest reaches of the solar system passed extremely close to Mars this weekend, giving astronomers a rare opportunity to study it. Video provided by Newsy
Powered by NewsLook.com
Latin America Launches Communications Satellite

Latin America Launches Communications Satellite

AFP (Oct. 17, 2014) Argentina launches a home-built satellite, a first for Latin America. It will ride a French-made Ariane 5 rocket into orbit, and will provide cell phone, digital TV, Internet and data services to the lower half of South America. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
This Week @ NASA, October 17, 2014

This Week @ NASA, October 17, 2014

NASA (Oct. 17, 2014) Power spacewalk, MAVEN’s “First Light”, Hubble finds extremely distant galaxy and more... Video provided by NASA
Powered by NewsLook.com
Saturn's 'Death Star' Moon Might Have A Hidden Ocean

Saturn's 'Death Star' Moon Might Have A Hidden Ocean

Newsy (Oct. 17, 2014) The smallest of Saturn's main moons, Mimas, wobbles as it orbits. Research reveals it might be due to a global ocean underneath its icy surface. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins