Featured Research

from universities, journals, and other organizations

Controlling Biomolecules With Magnetic 'Tweezers'

Date:
April 12, 2004
Source:
National Institute Of Standards And Technology
Summary:
An array of magnetic traps designed for manipulating individual biomolecules and measuring the ultrasmall forces that affect their behavior has been demonstrated by scientists at the National Institute of Standards and Technology (NIST).

An array of magnetic traps designed for manipulating individual biomolecules and measuring the ultrasmall forces that affect their behavior has been demonstrated by scientists at the National Institute of Standards and Technology (NIST).

Related Articles


Described in a recent issue of Applied Physics Letters, the chip-scale, microfluidic device works in conjunction with a magnetic force microscope. It's intended to serve as magnetic "tweezers" that can stretch, twist and uncoil individual biomolecules such as strands of DNA. The device should help scientists study folding patterns and other biochemical details important in medical, forensic and other research areas.

The new NIST device works like drawing toys that use a magnetized stylus to pick up and drag magnetic particles. Magnetic particles 2 to 3 micrometers across are suspended in a fluid and injected into the device. The surface of a thin membrane enclosing the fluid is dotted with an array of thin film pads made of a nickel-iron alloy. When a magnetic field is applied, each particle is attracted to the closest nickel-iron "trap."

So far, the research team has demonstrated that the traps attract individual particles and that the microscope tip can gently drag particles with piconewton forces. (One piconewton is about a trillionth the force required to hold an apple against Earth's gravity.) The next step is to attach particles to both ends of biomolecules such as DNA. The trapping stations then can be used to hold one end of a molecule while the microscope tip gently pulls on the other end. By applying magnetic fields in different directions, the researchers hope to ultimately rotate the magnetic particles to produce complex single molecule motions for genomic studies.


Story Source:

The above story is based on materials provided by National Institute Of Standards And Technology. Note: Materials may be edited for content and length.


Cite This Page:

National Institute Of Standards And Technology. "Controlling Biomolecules With Magnetic 'Tweezers'." ScienceDaily. ScienceDaily, 12 April 2004. <www.sciencedaily.com/releases/2004/04/040412012807.htm>.
National Institute Of Standards And Technology. (2004, April 12). Controlling Biomolecules With Magnetic 'Tweezers'. ScienceDaily. Retrieved November 29, 2014 from www.sciencedaily.com/releases/2004/04/040412012807.htm
National Institute Of Standards And Technology. "Controlling Biomolecules With Magnetic 'Tweezers'." ScienceDaily. www.sciencedaily.com/releases/2004/04/040412012807.htm (accessed November 29, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, November 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Magnetic Motors, Not Cables, Power This Elevator

Magnetic Motors, Not Cables, Power This Elevator

Newsy (Nov. 28, 2014) Imagine an elevator without cables. ThyssenKrupp has drafted an elevator concept that would cruise on linear magnetic motors. Video provided by Newsy
Powered by NewsLook.com
NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins