Featured Research

from universities, journals, and other organizations

St. Jude Researchers Create Image Of Enzyme That Orchestrates Natural Genetic Engineering

Date:
April 16, 2004
Source:
St. Jude Children's Research Hospital
Summary:
New insight into the structure of a virus enzyme that orchestrates a natural type of genetic engineering in bacteria provides important clues into how similar enzymes control the same process in human cells during DNA replication and repair.

New insight into the structure of a virus enzyme that orchestrates a natural type of genetic engineering in bacteria provides important clues into how similar enzymes control the same process in human cells during DNA replication and repair. These findings from investigators at St. Jude Children's Research Hospital are published in the April issue of Structure.

The St. Jude researchers developed a 3-D image of a key part of UvsW, a type of enzyme called a helicase. Helicase enzymes open up the double-stranded DNA molecules like a zipper, so each strand can be replicated to produce two new pieces of DNA. T4, a virus that infects bacteria, uses UvsW during a process called recombinant-dependent replication (RDR). RDR is a type of natural genetic engineering by which viruses, plants and animals introduce new genes into the DNA of one chromosome during replication and repair of broken DNA by using a section of another chromosome as a blueprint. The scientists studied the T4 helicase because it is a simple but effective model for understanding how similar helicases perform the same job in human cells.

The finding is important because UvsW is vital to the processes of DNA replication and repair, keeping the genetic material "stable" so mutations do not occur, according to Stephen White, Ph.D., chair of the St. Jude Department of Structural Biology and a member of the Department of Molecular Sciences at the University of Tennessee, Memphis. White is senior author of the Structure report.

UvsW also triggers RDR as part of a rescue mission to repair a snag in DNA replication called a stalled replication fork.

Normally, each single strand of DNA serves as a template, or blueprint, for remaking the other strand. In this way the enzymes involved in DNA replication rebuild each strand to make two chromosomes out of one. When a section of the double-stranded DNA molecule is separated into two single strands, the resulting Y-shaped structure is called the replication fork. A stalled replication fork occurs when the two strands of a chromosome's double-stranded DNA fail to separate. UvsW restarts RDR by unsnarling the stalled fork and restarting replication.

During RDR, the ends of the free strands at the fork drift into the DNA of another chromosome, like the free arm of one person pushing into the folded arms of another person. This causes a single strand from the first chromosome to be used as a blueprint by the second chromosome. By using the invading strand as a template to make new DNA, the second chromosome acquires new genes from the first chromosome, while the first chromosome acquires new genes from the second one. UvsW also orchestrates the use of one strand of DNA as a blueprint to patch up a broken section of another piece of DNA. This also contributes to introducing new genes into chromosomes.

"This process is like the continual mixing up of pieces of blueprints for two different houses," White said. "You still have two sets of blueprints, but each set has plans for one or more rooms that were originally in the other blueprint. The result is that the blueprints keep changing, adding variety to the houses that are made from them."

This is what happens to chromosomes during genetic recombination. The resulting shuffling of genes is the source of the diversity of life among viruses, as well as among plants and animals.

"Now that we know the exact structure of the part of UvsW that interacts with DNA, we can take a closer look at how this important enzyme works," White said. "Stable replication keeps the DNA stable, even while it is undergoing recombination. UvsW plays a major role in keeping DNA stable."

There is evidence to suggest that two human helicases, Bloom and Werner, may have similar roles to those of UvsW in rescuing stalled replication forks. Mutations in these helicases cause Bloom's syndrome and Werner syndrome, rare disorders linked to a predisposition to develop cancer.

White used a modified form of X-ray crystallography to create images of UvsW. In this technique, a crystallized sample of a protein is bombarded with a beam of X-rays. The pattern formed by the diffraction of the beams off the crystal is used to create a computer-generated, 3-D image of the protein. The modified version of this technique, multiwave anomalous diffraction (MAD), also bombards a crystallized protein with X-rays. However, in MAD, the investigator is able to alter the diffraction pattern by first having certain atoms that surround the protein absorb some of the incoming X-rays.

###

The paper's other authors are E. Allen Sickmier (St. Jude and University of Tennessee) and Kenneth N. Kreuzer (Duke University). This work was supported in part by a Cancer Center (CORE) grant and by ALSAC.

St. Jude Children's Research Hospital

St. Jude Children's Research Hospital is internationally recognized for its pioneering work in finding cures and saving children with cancer and other catastrophic diseases. Founded by late entertainer Danny Thomas and based in Memphis, Tennessee, St. Jude freely shares its discoveries with scientific and medical communities around the world. No family ever pays for treatments not covered by insurance, and families without insurance are never asked to pay. St. Jude is financially supported by ALSAC, its fundraising organization. For more information, please visit http://www.stjude.org.


Story Source:

The above story is based on materials provided by St. Jude Children's Research Hospital. Note: Materials may be edited for content and length.


Cite This Page:

St. Jude Children's Research Hospital. "St. Jude Researchers Create Image Of Enzyme That Orchestrates Natural Genetic Engineering." ScienceDaily. ScienceDaily, 16 April 2004. <www.sciencedaily.com/releases/2004/04/040414004050.htm>.
St. Jude Children's Research Hospital. (2004, April 16). St. Jude Researchers Create Image Of Enzyme That Orchestrates Natural Genetic Engineering. ScienceDaily. Retrieved September 3, 2014 from www.sciencedaily.com/releases/2004/04/040414004050.htm
St. Jude Children's Research Hospital. "St. Jude Researchers Create Image Of Enzyme That Orchestrates Natural Genetic Engineering." ScienceDaily. www.sciencedaily.com/releases/2004/04/040414004050.htm (accessed September 3, 2014).

Share This



More Health & Medicine News

Wednesday, September 3, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Snack Attack: Study Says Action Movies Make You Snack More

Snack Attack: Study Says Action Movies Make You Snack More

Newsy (Sep. 2, 2014) You're more likely to gain weight while watching action flicks than you are watching other types of programming, says a new study published in JAMA. Video provided by Newsy
Powered by NewsLook.com
U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

Newsy (Sep. 2, 2014) The U.N. says the problem is two-fold — quarantine zones and travel restrictions are limiting the movement of both people and food. Video provided by Newsy
Powered by NewsLook.com
Doctors Fear They're Losing Battle Against Ebola

Doctors Fear They're Losing Battle Against Ebola

AP (Sep. 2, 2014) As a third American missionary is confirmed to have contracted Ebola in Liberia, doctors on the ground in West Africa fear they're losing the battle against the outbreak. (Sept. 2) Video provided by AP
Powered by NewsLook.com
Tech Giants Bet on 3D Headsets for Gaming, Healthcare

Tech Giants Bet on 3D Headsets for Gaming, Healthcare

AFP (Sep. 2, 2014) When Facebook acquired the virtual reality hardware developer Oculus VR in March for $2 billion, CEO Mark Zuckerberg hailed the firm's technology as "a new communication platform." Duration: 02:24 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins