Featured Research

from universities, journals, and other organizations

Ultra-fast Laser Allows Efficient, Accessible Nanoscale Machining

Date:
April 22, 2004
Source:
University Of Michigan
Summary:
Think of a microscopic milling machine, capable of cutting just about any material with better-than-laser precision, in 3-D -- and at the nanometer scale.

ANN ARBOR, Mich. -- Think of a microscopic milling machine, capable of cutting just about any material with better-than-laser precision, in 3-D -- and at the nanometer scale.

Related Articles


In a paper published this week in the Proceedings of the National Academy of Sciences, University of Michigan researchers explain how and why using a femtosecond pulsed laser enables extraordinarily precise nanomachining. The capabilities of the ultra-fast or ultra-short pulsed laser have significant implications for basic scientific research, and for practical applications in the nanotechnology industry.

Initially, the researchers working at the Center for Ultrafast Optical Science wanted to use the ultra-fast laser as a powerful tool to study structures within living cells, said Alan Hunt, assistant professor, Department of Biomedical Engineering.

"It turned out we could push much farther than expected and the applications became broad, from microelectronics applications to MEMS (microelectromechanical systems) to microfluidics," Hunt said. One of the most perplexing problems in nanotechnology is finding an efficient and precise way to build and machine the tiny devices. For example, a human hair is about 100,000 nanometers across.

The unique physics of an ultra-short pulsed laser used at a very high intensity make it possible to selectively ablate or cut away features as small as 20 nanometers, Hunt said. This is possible because of the unique physics of how extremely short pulses of light interact with matter; specifically using femtosecond pulses, a blast of light just a quadrillionth of a second long.

Currently, there is no easy way to machine a wide variety of materials on the nanometer scale, Hunt said, and the technique with capabilities closest to the ultrafast laser is electron beam lithography. Even this approach does not allow machining below the surface or within a material.

Photolithography, the technique used to make computer chips, is used to do such machining on a larger scale but is difficult to get to the nanometer scale, requires specific materials and can generally only be used on one plane. For example, that means that channels on a chip cannot cross without mixing, placing a severe constraint on the microfluidics and "lab on a chip" designs.

But the unique physics of the femtosecond pulse allows machining in 3-D, Hunt said.

"If we have three channels on a plane, we can link the outer two without cutting into the center one, we can go down over and up, we can cut a U-shape," Hunt said. "Not being constrained to one plane, the level of complexity that can be achieved is much greater."

The research team included Hunt; Gerard Mourou, professor of electrical engineering and computer science; Ajit Joglekar, who recently completed his doctorate in biomedical engineering; Hsiao-hua Liu, a post doc at the Center for Ultrafast Optical Science; and Edgar Meyhofer, associate professor of biomedical engineering and mechanical engineering.

###

The U-M College of Engineering is celebrating its 150th anniversary this year, and is consistently ranked among the top engineering schools in the world. The college is comprised of 11 academic departments: aerospace engineering; atmospheric, oceanic and space sciences; biomedical engineering; chemical engineering; civil and environmental engineering; electrical engineering and computer science; industrial and operations engineering; materials science and engineering; mechanical engineering; naval architecture and marine engineering; and nuclear engineering and radiological sciences. Each year the college enrolls over 7,000 undergraduate and graduate students and grants about 1,200 undergraduate degrees and 800 masters and doctoral degrees. To learn more, visit http://www.engin.umich.edu.


Story Source:

The above story is based on materials provided by University Of Michigan. Note: Materials may be edited for content and length.


Cite This Page:

University Of Michigan. "Ultra-fast Laser Allows Efficient, Accessible Nanoscale Machining." ScienceDaily. ScienceDaily, 22 April 2004. <www.sciencedaily.com/releases/2004/04/040421234914.htm>.
University Of Michigan. (2004, April 22). Ultra-fast Laser Allows Efficient, Accessible Nanoscale Machining. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2004/04/040421234914.htm
University Of Michigan. "Ultra-fast Laser Allows Efficient, Accessible Nanoscale Machining." ScienceDaily. www.sciencedaily.com/releases/2004/04/040421234914.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins