Featured Research

from universities, journals, and other organizations

Wisconsin Chemists Find A New Chink In TB's Armor

Date:
May 10, 2004
Source:
University Of Wisconsin-Madison
Summary:
The family of bacteria that causes tuberculosis (TB) and leprosy are notoriously sturdy. And although the diseases they cause have been held in check for the past 50 years by antibiotics, some strains are becoming increasingly resistant to existing therapy.

MADISON - The family of bacteria that causes tuberculosis (TB) and leprosy are notoriously sturdy. And although the diseases they cause have been held in check for the past 50 years by antibiotics, some strains are becoming increasingly resistant to existing therapy.

Related Articles


Now, however, a new chink has been found in the cellular armor that makes these infectious diseases difficult to treat. The discovery, reported today (May 9) in the online editions of the journal Nature Structural & Molecular Biology by a team of chemists and biochemists from the University of Wisconsin-Madison, opens the door to the development of a new family of antibiotics to treat diseases that still claim as many as 3 million lives annually worldwide.

"Most of the treatments we have for these diseases date from the 1950s," says Laura L. Kiessling, a UW-Madison professor of chemistry and the leader of the team reporting the new discovery. "Many traditional antibiotics don't work against tuberculosis."

The bacteria that cause tuberculosis are literally tough as nails. With unique multilayered cell walls, the microbes resist easy treatment.

Current drug regimens typically last up to six months and require a mix of as many as six different drugs. Because the drugs cause unpleasant side effects, and because patients often feel better after a month or two, many people do not complete treatments, a phenomenon contributing to a worldwide epidemic of multidrug-resistant TB. Adding to the problem, in less developed countries where TB is most common, health care is spotty and drug supplies are frequently inadequate.

Kiessling and her colleagues, working with the support of the National Science Foundation, have detailed the workings of a key enzyme that the bacterium requires to maintain the integrity of its cell walls. Enzymes are proteins that initiate chemical reactions within plant and animal cells.

"We've figured out how this enzyme works. If you knock it out, the bacteria aren't viable," Kiessling explains. "It's an essential enzyme."

The TB microbe's success and resistance to traditional drugs is attributed in large measure to its multilayered cell wall, composed of chicken wire-shaped molecules wrapped around an inner membrane. Atop that structure, are three more layers that further insulate the microbe from attack by traditional antibiotics.

The enzyme is required for the TB bacterium to build its cell wall. The enzyme, in turn, depends on a derivative of vitamin B2 to make a cell wall building block. The work published today by Kiessling's group shows that the enzyme uses the vitamin in a new way, which also gives it a new biological role.

Detailing the interplay between vitamin B2 and the enzyme provides a blueprint for inhibitors of the enzymes that keep the bacterium's cell walls intact. As a result, Kiessling's group has effectively identified a target for drug manufactures interested in developing new antibiotics to combat TB and other diseases such as leprosy, which are caused by similar types of bacteria.

"Because we understand the mechanism better, we can design inhibitors of this enzyme," Kiessling says.

However, she notes that under the best circumstances, it takes years and many millions of dollars for new drugs to be developed. What's more, she says, many major drug manufacturers are not actively pursuing the development of new antibiotics, despite growing resistance by microbes to antibiotics currently in use.

Tuberculosis, once commonly referred to as consumption, has a long history. Evidence of tubercular decay has been found in the bones of Egyptian mummies. It was identified by Hippocrates, the ancient Greek physician, as the most widespread and fatal disease of the ancient world. It has claimed many notable victims throughout history, including the poet John Keats, composer Frederick Chopin, playwright Anton Chekhov and writers Robert Louis Stevenson, Emily Bronte, D.H. Lawrence and George Orwell.

In addition to Kiessling, the authors of the Nature Structural & Molecular Biology paper include Michelle Soltero-Higgen and Todd D. Gruber of the UW-Madison Department of Biochemistry and Erin E. Carlson of the UW-Madison Department of Chemistry.


Story Source:

The above story is based on materials provided by University Of Wisconsin-Madison. Note: Materials may be edited for content and length.


Cite This Page:

University Of Wisconsin-Madison. "Wisconsin Chemists Find A New Chink In TB's Armor." ScienceDaily. ScienceDaily, 10 May 2004. <www.sciencedaily.com/releases/2004/05/040510012438.htm>.
University Of Wisconsin-Madison. (2004, May 10). Wisconsin Chemists Find A New Chink In TB's Armor. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2004/05/040510012438.htm
University Of Wisconsin-Madison. "Wisconsin Chemists Find A New Chink In TB's Armor." ScienceDaily. www.sciencedaily.com/releases/2004/05/040510012438.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
Dads-To-Be Also Experience Hormone Changes During Pregnancy

Dads-To-Be Also Experience Hormone Changes During Pregnancy

Newsy (Dec. 18, 2014) A study from University of Michigan researchers found that expectant fathers see a decrease in testosterone as the baby's birth draws near. Video provided by Newsy
Powered by NewsLook.com
Prenatal Exposure To Pollution Might Increase Autism Risk

Prenatal Exposure To Pollution Might Increase Autism Risk

Newsy (Dec. 18, 2014) Harvard researchers found children whose mothers were exposed to high pollution levels in the third trimester were twice as likely to develop autism. Video provided by Newsy
Powered by NewsLook.com
UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins