Featured Research

from universities, journals, and other organizations

Plant-like Enzyme Acts As Key Life Cycle Switch In Malaria Parasite

Date:
May 14, 2004
Source:
Imperial College Of Science, Technology And Medicine
Summary:
An essential switch in the life cycle of the malaria parasite has been uncovered by researchers in England, Germany and Holland.

An essential switch in the life cycle of the malaria parasite has been uncovered by researchers in England, Germany and Holland.

Related Articles


They have established that to infect mosquitoes that transmit malaria, the parasites depend on a type of molecule normally found in plants, which they have named Calcium-Dependent Protein Kinase 4 (CDPK4).

The finding, based on studies of the malaria parasite of rodents, Plasmodium berghei, is described as basic science, but the authors suggest it may give drug researchers a specific and safe target against which to screen potential anti-malarial drug compounds.

The findings are reported in today's edition of the journal Cell (14 May) by researchers from Imperial College London, Leiden University Medical Center, Netherlands, and the Max-Planck Institute of Infection Biology, Germany.

"This work identifies the first signalling molecule that we know is essential for the transmission of the parasite," says Dr Oliver Billker, research fellow and lead author, from Imperial College London.

"It is an essential molecule because if the malaria parasite doesn't have this gene function then transmission of the parasite to mosquitoes is completely disrupted. It is also specific to development of the male gametes only."

"CDPK4 is unusual because apart from the malaria parasite and some other single-celled organisms, it is only seen in plants. This makes it appealing as a target for drug developers, who would not run such a big risk of developing a drug with strong side effects, because CDPK4-like molecules do not exist in humans."

The human malaria parasite has two hosts, humans and mosquitoes. Just after the mosquito has taken a blood meal from a human, malaria parasites in the mosquito bloodstream differentiate into male and female sexual forms, named micro- and macro-gametes respectively.

In 1997, Imperial College researchers discovered that the mosquito molecule xanthurenic acid is responsible for inducing development of the malaria parasite at this stage. Since then further work has shown that xanthurenic acid specifically causes a rise in calcium levels within the parasite.

Understanding how this calcium signal, which is ubiquitous in cells, is translated into a specific action in the cell at a specific stage of the parasite life cycle, took two years of careful scientific detective work by Dr Billker and colleagues.

Using data from the malaria parasite genome project completed in 2002, the researchers uncovered six protein kinases with striking similarities to those from a family normally seen in plants. These plant-like molecular switches have a unique architecture and, unlike their human counterparts, are regulated by calcium directly.

By constructing transgenic parasites in which individual kinases were deleted from the genome, the team established the essential role played by one, which they named CDPK4.

"This is an example of how we exploit genome data now," says Dr Billker. "We combine them with new methods of functional analysis such as microarrays, which tell us what genes are active at specific stages of the parasite's life cycle, and they are giving us great insights into the molecular components involved in signalling and regulation of the parasite." "We will use this method in future to dissect out more signalling pathways involved in the malaria parasite's life cycle. To a cell biologist it is very exciting to see such a well-defined trigger of parasite differentiation," adds Dr Billker.

The research was supported by the UK Medical Research Council.


Story Source:

The above story is based on materials provided by Imperial College Of Science, Technology And Medicine. Note: Materials may be edited for content and length.


Cite This Page:

Imperial College Of Science, Technology And Medicine. "Plant-like Enzyme Acts As Key Life Cycle Switch In Malaria Parasite." ScienceDaily. ScienceDaily, 14 May 2004. <www.sciencedaily.com/releases/2004/05/040514030308.htm>.
Imperial College Of Science, Technology And Medicine. (2004, May 14). Plant-like Enzyme Acts As Key Life Cycle Switch In Malaria Parasite. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2004/05/040514030308.htm
Imperial College Of Science, Technology And Medicine. "Plant-like Enzyme Acts As Key Life Cycle Switch In Malaria Parasite." ScienceDaily. www.sciencedaily.com/releases/2004/05/040514030308.htm (accessed October 24, 2014).

Share This



More Plants & Animals News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Black Bear Cub Goes Sunday Shopping

Black Bear Cub Goes Sunday Shopping

Reuters - Light News Video Online (Oct. 23, 2014) Price check on honey? Bear cub startles Oregon drugstore shoppers. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com
Weird-Looking Dinosaur Solves 50-Year-Old Mystery

Weird-Looking Dinosaur Solves 50-Year-Old Mystery

Newsy (Oct. 23, 2014) You've probably seen some weird-looking dinosaurs, but have you ever seen one this weird? It's worth a look. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins