Featured Research

from universities, journals, and other organizations

Artificial Light-dark Cycles Expose Circadian Clocks At Odds With Each Other

Date:
May 18, 2004
Source:
University Of Washington
Summary:
When jet lag or oft-changing work shifts make you feel out of synch, it's probably not your imagination.

When jet lag or oft-changing work shifts make you feel out of synch, it's probably not your imagination.

Related Articles


New research led by a University of Washington biologist demonstrates that there are at least two circadian clocks in the mammal brain, one that sticks strictly to an internal schedule and another that can be altered by external influences such as light and dark.

Typically the two clocks are synchronized so that various physical functions are in tune with each other, said Horacio de la Iglesia, a UW assistant professor of biology. But make a long plane trip or switch your 8-to-5 work schedule to begin at midnight and things can get out of kilter.

"When you travel to Europe, the rest-activity cycle will adjust relatively quickly. In two or three days you'll probably be sleeping when it's dark," de la Iglesia said. "But your temperature or hormone-release cycles might still be on Seattle time, affecting for instance how well you sleep."

A bit of brain tissue called the suprachiasmatic nucleus, a daily pacemaker that regulates rhythms such as sleep and wakefulness, has thousands of cells called neurons with synchronized circadian activities. But the neurons in the nucleus can be grouped into at least two secondary clocks that can become disconnected from one another when exposed to artificial day-night cycles.

For the study, a group of rats was exposed to artificially created 22-hour days, with 11 hours each of light and dark. With the shortened 22-hour days, the researchers found that what normally is daytime activity began to expand into the artificial night hours, and that enabled them to look at the interplay of two genes in the rats' brain clocks. One gene, called Per1, is active during the day and the other, Bmal1, is active at night.

The scientists found that when a rat behaved as expected, its suprachiasmatic nucleus contained Per1 during light periods and Bmal1 during dark. But when the daytime behavior began drifting into "night" hours, it turned out that both genes were active at the same time, Per1 in roughly the top half of the nucleus and Bmal1 in roughly the bottom half. That means the top half of the brain's main circadian clock can show a cycle of nearly 25 hours, which is normal for a rat, while the bottom half adjusts according to external signals such as light and dark.

The work is detailed in a paper published earlier this month in the journal Current Biology. Besides de la Iglesia, authors are William Schwartz of the University of Massachusetts Medical School and Trinitat Cambras and Antoni Dνez-Noguera, both of the University of Barcelona in Spain.

The work adds to a growing understanding that the body contains a complex network of oscillators that regulate the body's rhythms, including peripheral, or "slave," oscillators in organs such as the liver and lungs. In turn, such research could eventually lead to a cure for jet lag, or offer help for day-shift workers switching to a midnight schedule, when it can take several days of the new routine before the body stops exerting a strong urge to sleep, de la Iglesia said.

"Many of the people employed on shift work are internally desynchronized. They have a rest-activity cycle that is out of synch with the rest of their cycle, and some can't cope with this," he said. "The same thing happens to pilots who are constantly travelling across time zones."

There has been previous evidence that human rhythms can be thrown off by external cues, de la Iglesia said. For instance, people in isolation – perhaps spelunkers spending two weeks inside a dark cave – typically believe they have been isolated for a much shorter time than they really have been. That's because, lacking the usual time cues, the body's internal clocks start cycling at different paces, one running with the normal human period and one with a much longer period that makes 33 hours feel like one day.

"We think the phenomenon might have a neural base within the brain's circadian clock itself," he said.


Story Source:

The above story is based on materials provided by University Of Washington. Note: Materials may be edited for content and length.


Cite This Page:

University Of Washington. "Artificial Light-dark Cycles Expose Circadian Clocks At Odds With Each Other." ScienceDaily. ScienceDaily, 18 May 2004. <www.sciencedaily.com/releases/2004/05/040518074920.htm>.
University Of Washington. (2004, May 18). Artificial Light-dark Cycles Expose Circadian Clocks At Odds With Each Other. ScienceDaily. Retrieved March 28, 2015 from www.sciencedaily.com/releases/2004/05/040518074920.htm
University Of Washington. "Artificial Light-dark Cycles Expose Circadian Clocks At Odds With Each Other." ScienceDaily. www.sciencedaily.com/releases/2004/05/040518074920.htm (accessed March 28, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, March 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com
WH Plan to Fight Antibiotic-Resistant Germs

WH Plan to Fight Antibiotic-Resistant Germs

AP (Mar. 27, 2015) — The White House on Friday announced a five-year plan to fight the threat posed by antibiotic-resistant bacteria amid fears that once-treatable germs could become deadly. (March 27) Video provided by AP
Powered by NewsLook.com
House Ready to Pass Medicare Doc Bill

House Ready to Pass Medicare Doc Bill

AP (Mar. 26, 2015) — In rare bipartisan harmony, congressional leaders pushed a $214 billion bill permanently blocking physician Medicare cuts toward House passage Thursday, moving lawmakers closer to resolving a problem that has plagued them for years. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins