Featured Research

from universities, journals, and other organizations

Computer Model Shows Increased US Threat From Soybean Rust

Date:
May 26, 2004
Source:
University Of Illinois At Urbana-Champaign
Summary:
With support from the U.S. Department of Agriculture's Animal and Plant Health Protection Service, researchers at the University of Illinois at Urbana-Champaign are using sophisticated computer modeling to track the spread of the fungal disease known as Asian soybean rust.

URBANA, Ill. -- With support from the U.S. Department of Agriculture's Animal and Plant Health Protection Service, researchers at the University of Illinois at Urbana-Champaign are using sophisticated computer modeling to track the spread of the fungal disease known as Asian soybean rust.

In recent years, the aggressive form of the disease has moved from Asia to Africa and into parts of South America. It first showed up in Paraguay in 2001 and now is a problem for many of the major soybean-growing areas in Brazil and Argentina. While not yet found in the United States, the recent introduction of the disease into South America raises the danger that it eventually could spread to the United States.

The latest computer models from the Illinois study indicate that the disease has most likely already spread to soybean-growing areas in Brazil and Venezuela located north of the equator, making it inevitable that rust will reach the United States in a relatively short time.

"Our work shows that the U.S. is at high risk once the pathogen that causes the disease expands its range into the northern part of South America," said aerobiologist Scott Isard of the geography department at Illinois. "We have received credible reports that this has already happened, although the Brazilian government has not confirmed it so far. If it's already established there, we could even see rust in the U.S. as soon as the current growing season and certainly no later than a year or two down the road."

With an additional grant from the USDA's National Research Initiative, Isard is working with USDA plant pathologists Glen Hartman and Montes Miles, both based on the Illinois campus, and agricultural meteorologist Joseph Russo of ZedX Inc. in Bellefonte, Pa., to further enhance the predictive capabilities of the models.

Isard notes that the model already has been used to track the past movement of rust from Asia into Africa in 1996 and the subsequent spread into South America in 2001.

"Using our model, we can pick a day and a source area and take a historic view of how rust has spread," he said. "With detailed weather information from the National Oceanic and Atmospheric Administration, we can easily simulate where the spores will likely go."

Isard points out that most of the spores in the southern hemisphere are produced during late January and early February. Based on the computer model, there is no weather mechanism that will then bring the spores directly into the United States from that region.

"Once the disease moves into the northern hemisphere, all that changes," Isard said. "Then you have most of the spores produced during the height of the growing season in mid-summer, which coincides with the major growing season in the U.S. You also have different weather conditions, including hurricanes, which increase the likelihood it will spread north into the U.S."

According to Isard, the spread of rust requires the presence of a large number of soybean plants or other hosts, such as kudzu, and weather-related factors, such as wind currents and rain that can bring the spores down to the ground.

The scientists are also using the model to help assess the most likely times of the year and areas in the United States where the first epidemic will occur.

"Given what we know now, the most likely scenario is that it will happen during July or August in either the Appalachian region or the Corn Belt," Isard said. "It is less likely to show up in the Great Lakes States and Northeastern region. We hope that this assessment can help make more efficient use of the limited resources available for the scouting efforts."

Isard notes that the scenario will continue to change as the researchers add more biological information about rust and as it moves closer to the United States.

He further points out that the fungus that causes rust cannot survive winter weather. It can, however, easily survive in kudzu plants along the coastal areas of the United States.

"Rust will then spread into the interior during the soybean-growing season, but not to the same places every year," Isard said. "Based on historical weather data over the last 30 years, we predict that there would be outbreaks in about three of every four years in the major soybean areas."


Story Source:

The above story is based on materials provided by University Of Illinois At Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Urbana-Champaign. "Computer Model Shows Increased US Threat From Soybean Rust." ScienceDaily. ScienceDaily, 26 May 2004. <www.sciencedaily.com/releases/2004/05/040526065059.htm>.
University Of Illinois At Urbana-Champaign. (2004, May 26). Computer Model Shows Increased US Threat From Soybean Rust. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2004/05/040526065059.htm
University Of Illinois At Urbana-Champaign. "Computer Model Shows Increased US Threat From Soybean Rust." ScienceDaily. www.sciencedaily.com/releases/2004/05/040526065059.htm (accessed July 22, 2014).

Share This




More Computers & Math News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Google Plans To Speed Up Web Pages With New Image Format

Google Plans To Speed Up Web Pages With New Image Format

Newsy (July 21, 2014) Google is using compressed images in WebP format to help boost page loading times. The files are 25-to-34 percent smaller than PNGs and JPEGs. Video provided by Newsy
Powered by NewsLook.com
Uruguayan Creates Chess Game for Multiple Opponents

Uruguayan Creates Chess Game for Multiple Opponents

AFP (July 19, 2014) It no longer takes two to play chess – or at least according to a new version of the game invented by Uruguayan Gabriel Baldi, where up to four opponents can play. Duration: 00:31 Video provided by AFP
Powered by NewsLook.com
Clock Ticks Down on Internet Speed Debate

Clock Ticks Down on Internet Speed Debate

Reuters - US Online Video (July 18, 2014) The FCC received more than 800,000 comments on whether and how internet speeds should be regulated, even crashing its system. Lily Jamali reports. Video provided by Reuters
Powered by NewsLook.com
Google Won't Call Games With In-App Add-Ons Free, Apple Will

Google Won't Call Games With In-App Add-Ons Free, Apple Will

Newsy (July 18, 2014) The European Commission asked Google and Apple not to label apps "free" if they include in-app purchases. Google has complied; Apple has resisted. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins