Featured Research

from universities, journals, and other organizations

Pumping Energy To Nanocrystals From A Quantum Well

Date:
June 11, 2004
Source:
Los Alamos National Laboratory
Summary:
University of California scientists working at Los Alamos National Laboratory with a colleague from Sandia National Laboratories have developed a new method for exciting light emission from nanocrystal quantum dots.

Credit: Image Los Alamos National Laboratory

LOS ALAMOS, N.M., June 10, 2004 -- University of California scientists working at Los Alamos National Laboratory with a colleague from Sandia National Laboratories have developed a new method for exciting light emission from nanocrystal quantum dots. The discovery provides a way to supply energy to quantum dots without wires, and paves the way for a potentially wider use of tunable nanocrystalline materials in a variety of novel light-emitting technologies ranging from electronic displays to solid-state lighting and electrically pumped nanoscale lasers.

Related Articles


In a paper published in the today's issue of the scientific journal Nature, Los Alamos Chemistry Division scientist Victor Klimov and his colleagues describe their method for using non-contact, non-radiative energy transfer from a quantum well to produce light from an adjacent layer of nanocrystals. A quantum well is a semiconductor structure in which an electron is sandwiched between two barriers so that its motion is confined to two dimensions. In a real-life device, the quantum well would be pumped electrically in the same way a common quantum-well light-emitting diode is pumped.

According to Klimov, "The transfer of energy is fast enough to compete with exciton recombination in the quantum well, and that allows us to "move" more than 50 percent of the excitons to adjacent quantum dots. The recombination of these transferred excitons leads to emission of light with color that can be controlled by quantum dot size. The high efficiency of energy transfer in combination with the exceptional luminescent properties of nanocrystal quantum dots make hybrid quantum-well/nanocrystal devices feasible as efficient sources of any color light -- or even white light."

In addition to Klimov, project scientists include Marc Achermann, Melissa Petruska, Simon Kos and Darryl Smith from Los Alamos, along with Daniel Koleske from Sandia National Laboratories.

Quantum dot research at Los Alamos has led to a number of innovations over the past several years, including news ways to observe and manipulate nanodots and methods for making semiconductor nanocrystals respond to photons by producing multiple electrons as a result of impact ionization (http://www.lanl.gov/orgs/pa/newsbulletin/2004/05/03/text02.shtml). That innovation has potential applications in a new generation of solar cells that would produce as much as 35 percent more electrical output than current solar cells.

The nanocrystal quantum dot research is funded by DOE's Office of Basics Energy Sciences and by the Los Alamos Laboratory-Directed Research and Development (LDRD) program. LDRD funds basic and applied research and development focusing on employee-initiated creative proposals selected at the discretion of the Laboratory director.

Additional information on Los Alamos quantum dot research is available at http://quantumdot.lanl.gov/ online.

Los Alamos National Laboratory is operated by the University of California for the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy and works in partnership with NNSA's Sandia and Lawrence Livermore national laboratories to support NNSA in its mission.

Los Alamos enhances global security by ensuring the safety and reliability of the U.S. nuclear deterrent, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to defense, energy, environment, infrastructure, health and national security concerns.


Story Source:

The above story is based on materials provided by Los Alamos National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Los Alamos National Laboratory. "Pumping Energy To Nanocrystals From A Quantum Well." ScienceDaily. ScienceDaily, 11 June 2004. <www.sciencedaily.com/releases/2004/06/040611073031.htm>.
Los Alamos National Laboratory. (2004, June 11). Pumping Energy To Nanocrystals From A Quantum Well. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2004/06/040611073031.htm
Los Alamos National Laboratory. "Pumping Energy To Nanocrystals From A Quantum Well." ScienceDaily. www.sciencedaily.com/releases/2004/06/040611073031.htm (accessed October 25, 2014).

Share This



More Matter & Energy News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins