Featured Research

from universities, journals, and other organizations

New Version Of Premier Global Climate Model Released

Date:
June 23, 2004
Source:
National Science Foundation
Summary:
The National Center for Atmospheric Research (NCAR) in Boulder, Colo., is unveiling a powerful new version of a supercomputer-based system to model Earth's climate and to project global temperature rise in coming decades.

The Community Climate System Model, version 3, incorporates data about phenomena ranging from clouds to sea ice in order to simulate Earth's complex climate system. The model is so complex that it requires about three trillion computer calculations to simulate a single day of global climate, and it produces far more information about regional climate variations than the previous version.
Credit: Image courtesy National Center for Atmospheric Research

Arlington, Va. -- The National Center for Atmospheric Research (NCAR) in Boulder, Colo., is unveiling a powerful new version of a supercomputer-based system to model Earth's climate and to project global temperature rise in coming decades. Scientists will contribute results to the next assessment by the Intergovernmental Panel on Climate Change (IPCC), an international research body that advises policymakers on the likely impacts of climate change. The system, known as the Community Climate System Model, version 3 (CCSM3), indicates in a preliminary finding that global temperatures may rise more than the previous version had projected if societies continue to emit large quantities of carbon dioxide into the atmosphere.

Related Articles


NCAR developed the model in collaboration with researchers at universities and laboratories across the country, with funding from NSF as well as the Department of Energy, the National Oceanic and Atmospheric Administration, and the National Aeronautics and Space Administration. It is releasing the model results and the underlying computer codes to atmospheric researchers and other users worldwide.

"The release of CCSM3 marks a significant milestone in development of climate models," said Jay Fein, director of NSF's climate dynamics program. "The investment by the NSF, the Department of Energy and the scientific community is yielding new insight into the complexities of the Earth system and the likely responses of our planet to natural and anthropogenic influences."

CCSM3 shows global temperatures could rise by 2.6 degrees Celsius (4.7 degrees Fahrenheit) in a hypothetical scenario in which atmospheric levels of carbon dioxide are suddenly doubled. That is significantly more than the 2 degree Celsius (3.6 degree Fahrenheit) increase that had been indicated by the preceding version of the model.

William Collins, an NCAR scientist who oversaw the development of CCSM3, says researchers have yet to pin down exactly what is making the model more sensitive to an increased level of carbon dioxide. But he says the model overall is significantly more accurate than its predecessor.

"This model makes substantial improvements in simulating atmospheric, oceanic and terrestrial processes," Collins says. "It has done remarkably well in reproducing the climate of the last century, and we're now ready to begin using it to study the climate of the next century."

As scientists learn more about the atmosphere, the world's most powerful climate models generally agree about the climatic effects of carbon dioxide, an important greenhouse gas emitted by motor vehicles, power plants, and other sources. Observations show that atmospheric levels of carbon dioxide have increased from 280 parts per million by volume (ppmv) in preindustrial times to more than 370 ppmv today, and the increase is continuing. A doubling of carbon dioxide over present-day levels would significantly increase global temperatures, according to all the major models. The models do not always agree, however, on the complex impacts of clouds, sea ice, and other pieces of the climate system.

CCSM3 is one of the world's leading general-circulation climate models, which are extraordinarily sophisticated computer tools that incorporate phenomena ranging from the effect that volcanic eruptions have on temperature patterns to the impact of shifting sea ice on sunlight absorbed by the oceans. Climate models work by solving mathematical formulas, which represent the chemical and physical processes that drive Earth's climate, for thousands of points in the atmosphere, oceans, sea ice, and land surface. CCSM3 is so complex that it requires about 3 trillion computer calculations to simulate a single day of global climate.

With CCSM3, scientists were able to add four times as many points for the land and atmosphere than had existed in the previous version of CCSM, thereby producing far more information about regional variations in climate and climate change. The new version also captures such features as continental land temperatures and upper atmospheric temperatures far more accurately than the previous version. In a test, the model closely simulated changes in global temperatures over the last century.

In addition to simulating temperatures over the next century, scientists will use the model to study climate patterns of the past, such as the peak of the last ice age 21,000 years ago. They will also use it to probe chemical processes and the cycling of carbon between the atmosphere, ocean, and land, as well as the localized impacts of sulfates and other pollutants on climate.


Story Source:

The above story is based on materials provided by National Science Foundation. Note: Materials may be edited for content and length.


Cite This Page:

National Science Foundation. "New Version Of Premier Global Climate Model Released." ScienceDaily. ScienceDaily, 23 June 2004. <www.sciencedaily.com/releases/2004/06/040623082622.htm>.
National Science Foundation. (2004, June 23). New Version Of Premier Global Climate Model Released. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2004/06/040623082622.htm
National Science Foundation. "New Version Of Premier Global Climate Model Released." ScienceDaily. www.sciencedaily.com/releases/2004/06/040623082622.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Lava on Track to Hit Hawaii Market

Raw: Lava on Track to Hit Hawaii Market

AP (Dec. 19, 2014) Lava from an active volcano on Hawaii's Big Island slowed slightly but stayed on track to hit a shopping center in the small town of Pahoa. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Arctic Warming Twice As Fast As Rest Of Planet

Arctic Warming Twice As Fast As Rest Of Planet

Newsy (Dec. 18, 2014) The Arctic is warming twice as fast as the rest of the planet, thanks in part to something called feedback. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins