Featured Research

from universities, journals, and other organizations

Argonne Scientists Determine Structure Of Staph, Anthrax Enzyme

Date:
July 15, 2004
Source:
Argonne National Laboratory
Summary:
Researchers at the U.S. Department of Energy's Argonne National Laboratory and the University of Chicago have determined the crystal structure of sortase B, an enzyme found in the bacteria that cause staph and anthrax.

CRYSTAL MODEL — Model of the crystal structure of sortase B, an enzyme found in the bacteria that cause staph and anthrax.
Credit: Image courtesy of Argonne National Laboratory

Researchers at the U.S. Department of Energy's Argonne National Laboratory and the University of Chicago have determined the crystal structure of sortase B, an enzyme found in the bacteria that cause staph and anthrax. While an antibiotic is probably five to seven years away, the structure could provide the first clue in developing a treatment for the infections.

The research is published today in the journal Structure.

It took the researchers 21 days to build the three dimensional model of sortase from the genome. Without the new technology available at Argonne's Structural Biology Center, including the Advanced Photon Source's powerful X-rays to illuminate the structures and the Midwest Center for Structural Genomics' robotic and automation facilities for protein expression, purification and crystallization, the process could have taken several months.

By analyzing genomes, the researchers uncover information that will lead to structure-based or "rational" drug design. The problem is that researchers don't know what half the proteins coded by the genome do or how they work.

Now that the researchers understand the enzyme, they hope to find a way to stop it – or at least to slow it down. Sortase attaches proteins to the surface of bacterial pathogens. These proteins help the pathogens survive and flourish.

Bacteria like staph and anthrax need iron to function. But little free iron is available in the blood stream because most of it is bound in red blood cells. So the bacteria develop a mechanism to pry open the red blood cells, and these proteins help them.

"This is actually a very smart mechanism," said Andreji Joachimiak, lead researcher and director of the Structural Biology Center. The process is outlined in an article published in Science last year by Olaf Schneewind of the University of Chicago, which laid the groundwork for the sortase project.

The bacteria open the blood cell, bind the hemoglobin that contains heme – the pigment containing iron in hemoglobin – transport the heme, degrade the heme and then extract the iron.

Before the protein can bind the hemoglobin, it has to be attached to a specific position on the surface of the cell. The bacteria use a specific enzyme to accomplish this; in this case it is sortase.

"Sortase would be a good target for a drug, because if one can block the enzyme, it will not be able to attach these proteins to the surface and the bacteria would not be able to get iron from our bloodstream," Joachimiak said.

The research looks at sortase from both staph and anthrax – more formally, Staphylococcus aureus, and Bacillus anthracis, and concludes that the two are similar. Both have the same catalytic amino acid triad with Cys, His and Asp residues present in both enzymes -- which means that the site of the enzyme-protein reaction is the same. Only the location of one of the residues varies.

Joachimiak said the fact that they have the same triad is important. If the sortase active site is the same in both, it can be blocked with just one drug. Furthermore, versions of sortase are found in several other gram positive bacteria. That means one drug could double up and target a variety of different bacteria. Also significant, the enzyme is found only in gram positive bacteria, meaning treatments that target it would not likely affect human enzymes.

Now that the structure is known, Joachimiak said the next step is to mimic the signal sequence, or peptide, in the protein with a drug that blocks the enzyme.

"We would like to design a drug that will look like the peptide, but will not be the peptide," he said. "Something else that will bind to the same site and make sure the enzyme is dead or inactive."

This step is based primarily on trial and error. However, if scientists know the structure, they can make a more educated guess. "We need to study more proteins from these genomes to better understand their biology and therefore be able to treat them or control them," Joachimiak said. "We know so little so far."

Research continues at Argonne's Structural Biology Center where more than 530 structures have been determined. Nearly 150 protein structures have been determined at the Midwest Center for Structural Genomics and recorded with the International Protein Data Bank -- that's more than any other structural genomics center.

Joachimiak's co-authors are colleagues R-g. Zhang, R-y. Wu and G. Joachimiak at Argonne and S.K. Mazmanian, D.M. Missiakas, P. Gornicki and O Schneewind from the University of Chicago. The published research was supported by the National Institutes of Health Grants and the U.S. Department of Energy Office of Biological and Environmental Research.

###

The nation's first national laboratory, Argonne National Laboratory conducts basic and applied scientific research across a wide spectrum of disciplines, ranging from high-energy physics to climatology and biotechnology. Argonne has worked with more than 600 companies and numerous federal agencies and other organizations to help advance America's scientific leadership and prepare the nation for the future. The University of Chicago operates Argonne as part of the U.S. Department of Energy's national laboratory system.


Story Source:

The above story is based on materials provided by Argonne National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Argonne National Laboratory. "Argonne Scientists Determine Structure Of Staph, Anthrax Enzyme." ScienceDaily. ScienceDaily, 15 July 2004. <www.sciencedaily.com/releases/2004/07/040715080805.htm>.
Argonne National Laboratory. (2004, July 15). Argonne Scientists Determine Structure Of Staph, Anthrax Enzyme. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2004/07/040715080805.htm
Argonne National Laboratory. "Argonne Scientists Determine Structure Of Staph, Anthrax Enzyme." ScienceDaily. www.sciencedaily.com/releases/2004/07/040715080805.htm (accessed April 18, 2014).

Share This



More Matter & Energy News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins