Featured Research

from universities, journals, and other organizations

A Pathway To Blocking Autoimmunity

Date:
July 21, 2004
Source:
Howard Hughes Medical Institute
Summary:
By reprogramming cells in the immune system, a team of scientists led by a Howard Hughes Medical Institute (HHMI) international research scholar has found a way to boost production of natural killer T cells, with long-term potential for fighting diseases in which the body attacks its own cells.

By reprogramming cells in the immune system, a team of scientists led by a Howard Hughes Medical Institute (HHMI) international research scholar has found a way to boost production of natural killer T cells, with long-term potential for fighting diseases in which the body attacks its own cells.

Natural killer T (NKT) cells maintain the immune system's balance between destruction and tolerance, a mechanism that is off kilter in autoimmune diseases such as type 1 diabetes and irritable bowel disease.

“If we can regulate the level of NKT cells, we have a chance to slow down the process of type 1 diabetes,” said team leader László Nagy, HHMI international research scholar and a molecular biologist at the Research Center for Molecular Medicine, University of Debrecen, Hungary. He and colleagues from the Research Center collaborated with a scientist from Albert Einstein College of Medicine in New York to do the series of experiments, which was published in the July 2004 issue of the journal Immunity.

After finding that a transcription factor called PPAR-gamma is expressed in dendritic cells—the immune system's first responders—Nagy and colleagues used a drug called rosiglitazone to increase PPAR-gamma activity. The additional PPAR-gamma activity prompted immature dendritic cells to develop into a form that could activate NKT cells specifically.

“Everyone knew that dendritic cells are derived from monocytes, and we knew there were different kinds of dendritic cells,” Nagy said. “But nobody knew the regulatory events that drove dendritic cells to differentiation. We described a pathway to make dendritic cells with a special phenotype that includes NKT cell induction.”

Dendritic cells wait in peripheral tissue, such as the skin, ready to engulf foreign invaders or dying cells. Once they take up fragments of these cells, known as antigens, they migrate to the lymph nodes, where they prime T cells to mount a specific immune response against that antigen. The type of immune response induced varies depending on the form of dendritic cells.

Nagy believes his group has found a way to make dendritic cells that favor recognition and tolerance of self - preventing, for example, the destruction of the insulin-producing beta cells of the pancreas that occurs in type 1 diabetes.

Once they found that PPAR-gamma was expressed in dendritic cells, the researchers profiled each gene regulated by PPAR-gamma to characterize the pathway leading to NKT activation. They were able to show that PPAR-gamma regulated the expression of a gene called CD1d, which encodes a glycoprotein responsible for the presentation of self and foreign lipids to T cells. This protein is indispensable for the generation of NKT cells.

The researchers state that the work provides insight into how signals from outside the cell can influence differentiation and gene expression and is an entry point for intervention into autoimmunity by modulating CD1d expression, and NKT cell activation.

“We think PPAR-gamma is capable of orchestrating a coordinated response whether endogenous ligands arrive from outside of the cell or are generated inside the cell,” Nagy said.

Previous studies with non-obese diabetic (NOD) mice, a model of type 1 diabetes, support the idea that modulating NKT cell levels can help combat autoimmunity. These studies have linked the process of beta-cell destruction and development of type 1 diabetes to the CD1d gene and NKT cells. In 2003, another research group reported that treating NOD mice with a molecule that activates PPAR-gamma substantially reduced development of type 1 diabetes.

Although the current studies were limited to cultured human cell lines, Nagy sees potential for testing the mechanism in patients. Rosiglitazone, the drug they used to activate PPAR-gamma, is already used in the United States to improve insulin sensitivity in patients with type 2 diabetes. Nagy suggested that looking for changes in the NKT cells of patients taking rosiglitazone would indicate whether the mechanism is active.

Nagy and colleagues continue to study the PPAR-gamma pathway, and have recently begun using mouse models to knock out relevant components—PPAR-gamma, CD1d, and NKT cells—to evaluate their impact on the pathway's function.


Story Source:

The above story is based on materials provided by Howard Hughes Medical Institute. Note: Materials may be edited for content and length.


Cite This Page:

Howard Hughes Medical Institute. "A Pathway To Blocking Autoimmunity." ScienceDaily. ScienceDaily, 21 July 2004. <www.sciencedaily.com/releases/2004/07/040721091234.htm>.
Howard Hughes Medical Institute. (2004, July 21). A Pathway To Blocking Autoimmunity. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2004/07/040721091234.htm
Howard Hughes Medical Institute. "A Pathway To Blocking Autoimmunity." ScienceDaily. www.sciencedaily.com/releases/2004/07/040721091234.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) — Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) — The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) — Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) — New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins