Featured Research

from universities, journals, and other organizations

Method To Visualize Gene Activity May Provide Important Insight Into Normal Development And Genome Function

Date:
August 6, 2004
Source:
University Of California - San Diego
Summary:
A technique developed by University of California, San Diego biologists, which uses bright fluorescent dyes to reveal the activity of genes in individual cells of an organism, promises to be a boon to developmental biologists, and may provide new insight into how cancerous tumors begin and grow.

Activity of five genes in a Drosophila embryo. Credit: Dave Kosman, UCSD

A technique developed by University of California, San Diego biologists, which uses bright fluorescent dyes to reveal the activity of genes in individual cells of an organism, promises to be a boon to developmental biologists, and may provide new insight into how cancerous tumors begin and grow.

The advance, described in the August 6 issue of Science, allows researchers, for the first time, to simultaneously visualize the activity of multiple genes in the same cell. The combination of genes that are active in a particular cell during development determines that cell’s fate—what type of cell it becomes. The advance also makes it possible to quantify how active a gene is, and even infer the genetic makeup of an organism.

“In addition to facilitating our own research on fruit fly development, there are many potential applications for this technique,” says Ethan Bier, a professor of biology at UCSD who led the research team. “For example, it could be used to understand how tumors arise and grow, by revealing what genes are turned on and when. With this information, it should be possible for cancer biologists to predict how aggressive a tumor will be from its early patterns of gene expression.”

“Cell fate decisions must be understood in order for any of the incredible medical potential of stem cell therapy to be realized,” adds Dave Kosman, a research scientist in the Bier and McGinnis laboratories and lead author on the paper

Multiplex labeling, as the technique is called, uses RNA tagged with a fluorescent molecule to signal that a gene is turned on. When a gene is “on” it produces RNA copies—gene transcripts—of itself. The biologists designed fluorescently-tagged RNA molecules that are complementary to the gene transcripts, and bind to them like Velcro. Therefore a fluorescent beacon reveals the existence and location of the RNA gene copy.

“Multiplex labeling has allowed us to directly map the activation patterns of micro-RNA genes, which were hitherto undetectable,” says William McGinnis, a professor of biology at UCSD and co-principal investigator of the study. “Micro-RNAs were known to be important in development, but this is the first evidence indicating that these genes can control the embryonic body plan.”

Different colored fluorescent molecules can be used to identify transcripts from different genes in the same cell. It works even if one gene is much more active than another, because the amount of fluorescence of each color is quantified separately.

“When using the microscope to measure the fluorescence, the light is fanned out into a rainbow, and each color is read through a separate channel,” explains Bier. “That way if the light is 90 percent blue and ten percent yellow, it might look blue to the naked eye, but the microscope detects each color present.”

According to Bier, multiplex labeling fills a gap in developmental biologists’ toolkit between gene chips, which can identify several hundred gene transcripts at a time, but not their location, and methods that can reveal the identity and location of up to three gene transcripts simultaneously—though not if they are in the same cell. So far the researchers have used multiplex labeling to visualize the activity of up to seven genes at the same time, but they predict it will be possible to increase this to 50.

Newly developed, ultra-bright fluorescent molecules make the multiplex labeling technique possible. The fluorescent molecules were provided by Molecular Probes, Inc., and the company’s scientists also shared their expertise with the UCSD researchers. Developing an effective way to attach the fluorescent molecule to the RNAs complementary to the gene transcripts, and perfecting the overall labeling process were also pivotal in the development of the technique.

“Up until now visualizing gene transcripts has been more art than science,” says Kosman. “There was a lot of trial and error involved. We have developed a reliable technique that is powerful enough to generate a molecular fingerprint of the gene activity in a single cell.”

Bier contrasted the level of detail revealed with multiplex labeling and previous techniques for visualizing gene activity as being akin to “the difference between looking at the stars through a telescope versus binoculars.” The researchers point out that while they have refined the technique in Drosophila embryos, it will likely require modifications to work in other organisms. A detailed guide to the labeling process accompanying the paper, and available through Science’s website, should facilitate the necessary adaptations.

Other UCSD contributors to the paper were Claudia M. Mizutani and Derek Lemons and W. Gregory Cox was a contributor from Molecular Probes, Inc. This research was supported by grants from the National Science Foundation and the National Institutes of Health.


Story Source:

The above story is based on materials provided by University Of California - San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University Of California - San Diego. "Method To Visualize Gene Activity May Provide Important Insight Into Normal Development And Genome Function." ScienceDaily. ScienceDaily, 6 August 2004. <www.sciencedaily.com/releases/2004/08/040806095617.htm>.
University Of California - San Diego. (2004, August 6). Method To Visualize Gene Activity May Provide Important Insight Into Normal Development And Genome Function. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2004/08/040806095617.htm
University Of California - San Diego. "Method To Visualize Gene Activity May Provide Important Insight Into Normal Development And Genome Function." ScienceDaily. www.sciencedaily.com/releases/2004/08/040806095617.htm (accessed July 31, 2014).

Share This




More Health & Medicine News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Xtreme Eating: Your Daily Caloric Intake All On One Plate

Xtreme Eating: Your Daily Caloric Intake All On One Plate

Newsy (July 30, 2014) The Center for Science in the Public Interest released its 2014 list of single meals with whopping calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins