Featured Research

from universities, journals, and other organizations

Protective Gene May Enhance Vaccine Responses

Date:
August 16, 2004
Source:
University Of Chicago Medical Center
Summary:
Researchers from the University of Chicago have discovered the first of a new class of "protective factors" that appear to be required for the development of memory T cells, the cells that form the core of a vaccine response.

Researchers from the University of Chicago have discovered the first of a new class of "protective factors" that appear to be required for the development of memory T cells, the cells that form the core of a vaccine response. The finding could help scientists create more effective vaccines and may lead to potent immune system-based therapies against diseases that have previously eluded vaccines, such as cancer or AIDS.

When the immune system detects an invader, such as a virus, T cells with an affinity for that particular invader multiply rapidly, attack and eliminate infected cells. Once the infection is cleared, however, 90 to 95 percent of those T cells die off, a process called contraction. The five percent or so that survive are known as memory T cells. If a similar infection recurs, these experienced warriors are prepared to rush to the site, recognize that invader and eradicate it again.

Scientists know a great deal about the rapid proliferation and differentiation of these T cells but very little about the factors that regulate contraction. In the September, 2004, issue of Nature Immunology – published on-line August 15 -- the researchers show that activation of the gene for the Serine protease inhibitor 2A (Spi2A) can prevent the death of T cells during the contraction phase, resulting in about five times as many memory T cells.

"Drugs based on protective factors such as Spi2A could provide an enormous boost to vaccines," said study author Philip Ashton-Rickardt, professor of pathology and a member of the committee on immunology at the University of Chicago. "This could allow us to extend the duration of an immune response against chronic infections or to focus the power of the immune system on tumor cells, targets that have thus far been quite elusive."

The researchers began by screening approximately 11,000 genes from mouse T cells, to find the small number of genes that were more active in the T cells that survived the contraction phase after exposure to a virus. Then they focused on the likely candidates, genes that interfered with the processes that trigger cell death. Their search led them to Spi2A.

Spi2A, they found, was produced in higher amounts in memory T cells. It suppressed cathepsin B, a potent digestive enzyme that can induce cell death. T cell populations in which Spi2A levels were reduced produced fewer memory cells. As a consequence, mice with low Spi2A levels produced a severely diminished response to the virus when exposed to it a second time.

On the other hand, mice with elevated Spi2A produced up to five times the normal number of memory T cells. When faced with the virus a second time, these memory T cells produced an overwhelming response, completely eradicating the infection within hours.

"Spi2A appears to play a crucial role in regulating contraction," Ashton-Rickardt said. "Increasing Spi2A levels alone can increase the survival of memory T cells from the standard 5 to 10 percent up to about 40 percent.

His lab has already begun to test small molecules that mimic the effects of Spi2A and could be given along with a vaccine.

This finding may also provide clues about how to reverse the process, suggesting ways to reduce or eliminate memory T cells responsible the unwanted immune responses that cause autoimmune diseases such as arthritis.

Additional authors of the paper include Ni Lui, Tiphanie Phillips, Minling Zhang, Yue Wang, Joseph Opferman and Ramila Shah, all from the University of Chicago. The National Institutes of Health funded the study.


Story Source:

The above story is based on materials provided by University Of Chicago Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

University Of Chicago Medical Center. "Protective Gene May Enhance Vaccine Responses." ScienceDaily. ScienceDaily, 16 August 2004. <www.sciencedaily.com/releases/2004/08/040816085047.htm>.
University Of Chicago Medical Center. (2004, August 16). Protective Gene May Enhance Vaccine Responses. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2004/08/040816085047.htm
University Of Chicago Medical Center. "Protective Gene May Enhance Vaccine Responses." ScienceDaily. www.sciencedaily.com/releases/2004/08/040816085047.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins