Featured Research

from universities, journals, and other organizations

Molecular Motor Myosin VI Moves 'Hand Over Hand,' Researchers Say

Date:
September 3, 2004
Source:
University Of Illinois At Urbana-Champaign
Summary:
In the human body, hundreds of different types of biomolecular motors help carry out such essential tasks as muscle contraction, moving chromosomes during cell division, and reloading nerve cells so they can repeatedly fire. How these little proteins perform their duties is becoming clearer to scientists using an extremely sensitive measurement technique.

Myosin VI (blue) is a molecular motor that walks "backwards" on filaments of actin (red). By labeling a myosin VI on the head (green), or on the neck (red), and localizing the dye within a few nanometers, scientists determined that myosin walks "hand-over-hand," while causing a part of the protein to come undone. (Graphic courtesy Paul Selvin)

CHAMPAIGN, Ill. — In the human body, hundreds of different types of biomolecular motors help carry out such essential tasks as muscle contraction, moving chromosomes during cell division, and reloading nerve cells so they can repeatedly fire.

How these little proteins perform their duties is becoming clearer to scientists using an extremely sensitive measurement technique. Myosin VI, they found, moves by the same “hand-over-hand” mechanism as two other molecular motors, myosin V and kinesin.

“Now that a third molecular motor has been found to move in the same hand-over-hand fashion, the argument for a rival ‘inchworm’ motion is getting pretty weak,” said Paul Selvin, a professor of physics at the University of Illinois at Urbana-Champaign and a co-author of a paper to appear in the Journal of Biological Chemistry.

Myosin VI is a reverse-direction molecular motor that moves materials to various locations within a living cell. Like the related protein myosin V, myosin VI has two “arms” connected to a “body.” The tiny molecule converts chemical energy into mechanical motion, and transports its load by “stepping” along polarized filaments of actin – but in the opposite direction from other myosin variants.

“Studies have suggested two main models for the stepping movement,” Selvin said. “One is the hand-over-hand model in which the two arms alternate in the lead. The other model is the inchworm model in which one arm always leads.”

To examine the myosin VI stepping mechanism, the researchers applied the same technique that was used to study both myosin V and kinesin. Called FIONA – Fluorescence Imaging with One Nanometer Accuracy – the measurement technique can track the position of a single molecule to within 1.5 nanometers. (One nanometer is a billionth of a meter, or about 10,000 times smaller than the width of a human hair).

“First, we attached a small fluorescent dye to one of the arms and took a picture with a digital camera attached to a microscope to find exactly where the dye was,” Selvin said. “Then we fed the myosin a little food called adenosine triphosphate, and it took a step. We took another picture, located the dye, and measured how far the dye moved.”

By examining the step size, the scientists could determine whether the protein used a hand-over-hand mechanism or an inchworm mechanism for movement. “The average step size for the myosin VI arm was approximately 60 nanometers, while the molecule’s center of mass moved only half that distance,” Selvin said. “This clearly indicated that a hand-over-hand model was being employed.”

Surprisingly, myosin VI has a step size that is highly variable, but on average is nearly as large as that of myosin V, which has a lever arm that is three times longer.

“For myosin VI to reach the same distance, the molecule must somehow come apart and then snap together again,” Selvin said. “To understand how it accomplishes this feat will require further study.”

The co-authors of the paper are Selvin, Hyokeun Park and Ahmet Yildiz at Illinois, and Li-Qiong Chen, Dan Safer, H. Lee Sweeney and Zhaohui Yang at the University of Pennsylvania. The National Institutes of Health funded the work.


Story Source:

The above story is based on materials provided by University Of Illinois At Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Urbana-Champaign. "Molecular Motor Myosin VI Moves 'Hand Over Hand,' Researchers Say." ScienceDaily. ScienceDaily, 3 September 2004. <www.sciencedaily.com/releases/2004/09/040901091750.htm>.
University Of Illinois At Urbana-Champaign. (2004, September 3). Molecular Motor Myosin VI Moves 'Hand Over Hand,' Researchers Say. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2004/09/040901091750.htm
University Of Illinois At Urbana-Champaign. "Molecular Motor Myosin VI Moves 'Hand Over Hand,' Researchers Say." ScienceDaily. www.sciencedaily.com/releases/2004/09/040901091750.htm (accessed April 17, 2014).

Share This



More Matter & Energy News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com
Industry's Optimism Shines At New York Auto Show

Industry's Optimism Shines At New York Auto Show

Newsy (Apr. 16, 2014) After seeing auto sales grow last month, there's plenty for the industry to celebrate as it rolls out its newest designs. Video provided by Newsy
Powered by NewsLook.com
Ford Mustang Fetes Its 50th Atop Empire State Building

Ford Mustang Fetes Its 50th Atop Empire State Building

AFP (Apr. 16, 2014) Ford celebrated the 50th birthday of its beloved Mustang by displaying a new model of the convertible on top of the Empire State Building in New York. Duration: 00:28 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins