Featured Research

from universities, journals, and other organizations

Not-So-Spotty Material Breakthrough: Researchers Master Self-assembly Of Novel Nanodots

Date:
September 1, 2004
Source:
National Science Foundation
Summary:
Using pulsed lasers, researchers have coaxed the metal nickel to self-assemble into arrays of nanodots – each spot a mere seven nanometers (seven billionths of a meter) across -- one-tenth the diameter of nickel nanodots and on par with the world's smallest.

High-resolution image from a scanning transmission electron microscope showing a single nickel nanocrystal, a nanodot. Each "bump" is an individual nickel atom. Credit: Jagdish Narayan and Ashutosh Tiwari, North Carolina State University/NSF Center for Advanced Materials and Smart Structures.

ARLINGTON, Va. -- Using pulsed lasers, researchers have coaxed the metal nickel to self-assemble into arrays of nanodots – each spot a mere seven nanometers (seven billionths of a meter) across -- one-tenth the diameter of nickel nanodots and on par with the world's smallest.

Because the method works with a variety of materials and may drastically reduce imperfections, the new procedure may also bolster research into extremely hard materials and efforts to develop ultra-dense computer memory.

The researchers are working with an industry partner to apply the technique to development of next-generation light-emitting diodes (LEDs) – the small, bright lights seen in traffic signals and luxury automobile brake lights. The experimental LEDs are already more efficient than existing devices, potentially lasting decades and using a fraction of the power of fluorescent bulbs.

Jagdish Narayan and Ashutosh Tiwari, both of North Carolina State University and the National Science Foundation's Center for Advanced Materials and Smart Structures, invented the new materials and manufacturing processes.

They announced their findings in the September, 2004, issue of Nanoscience and Nanotechnology.

Narayan and Tiwari used a pulsed excimer laser to create conditions under which nickel self-assembles into 3-D, ordered arrays within aluminum oxide and titanium nitride matrices. Applying similar techniques to gallium nitride and zinc oxide, the researchers are hoping to further improve the efficiency of their LED devices.

Computer applications are further away, as many additional hurdles need to be cleared before the nanodots become actual chips. However, since every nickel-metal nanodot could theoretically store a single bit of information, the researchers believe that a one-inch chip using that technology could eventually store 10 Terabits of data.

According to the researchers, the chip would theoretically have several hundred times more storage than conventional microchips of the same size. Five Terabits could fit on, coincidentally, a nickel. If nanodot memory chips eventually succeed, the entire contents of the Library of Congress could fit onto a pocket full of "change."

From the researchers:

"The grand challenge is to build, efficiently and reliably, a nanostructure using nanounits. But nature doesn't like to create nano-sized units of uniform size—they are at a higher energy state." – Jagdish "Jay" Narayan, John C. C. Fan Family Distinguished Chair in Materials Science at North Carolina State University and Director, NSF Center for Advanced Materials and Smart Structures

"Controlled processing and self-assembly in three dimensions are required because you cannot create these structures and then assemble them. They are too small. So to be able to use this technology, you must have self-assembly and it must be 3-D." – Jagdish "Jay" Narayan

"In the past we could make only one-layer structures and 3-D self-assembly wasn't possible. We couldn't control the medium. Now, with this development we can control the medium and do 3-D self-organization. More importantly we can change the size in different layers and can change the functionality at different depths." – Jagdish "Jay" Narayan

"The research provides the basic framework for nanostructured materials for information storage, spin transistors, single-electron transistors and hydrid devices, superhard coatings, and novel biomaterials." – Jagdish "Jay" Narayan

"In the 6-10 nm dots created so far, we have the ability to control the spin patterns – the spin is what stores the bit of information. Assuming a 7nm magnetic nanodot will store one bit of information, we can achieve over 10 trillion bits per square inch, which is close to 500 times the existing storage density." – Jagdish "Jay" Narayan

From experts at NSF:

"Narayan has used the basic concepts of self-assembly to create a 3-D array of nanodots which may have significant applications in lighting, lasers, spintronics, and optical devices. If developed for practical applications in the next 2-3 years, the nanodot lighting systems may have significant environmental, economic and energy-saving advantages." – Mihail C. Roco, Senior Advisor for Nanotechnology, NSF

"The study shows the importance of basic research and encouraging technical innovation. This device is part of the first generation of passive nanostructures and illustrates how one might exploit new phenomena and behavior of materials at the nanoscale for economic advantage." – Mihail C. Roco

"In a way, this is an illustration of a general objective of United States' National Nanotechnology Initiative (NNI) – the systematic control of the nanoscale in order to obtain new properties and functions." – Mihail C. Roco

"We are creating infrastructure: NCSU has established a strength in the area of nanostructured materials, and at this moment, we can see several results that weren't initially planned." – Mihail C. Roco

"The expansion of infrastructure for nanoscale research has created a huge base of scientific discovery and potential technological development. A similar trend can be seen in education. From 5 universities with graduate programs in 1999, we now have about 270 academic institutions with undergraduate and graduate programs related to nanoscale science and engineering." – Mihail C. Roco

###

North Carolina State University Release available at: http://www.engr.ncsu.edu/news/news_articles/narayan.html

NSF Center for Advanced Materials and Smart Structures (CAMSS): http://www.mse.ncsu.edu/CAMSS/nano


Story Source:

The above story is based on materials provided by National Science Foundation. Note: Materials may be edited for content and length.


Cite This Page:

National Science Foundation. "Not-So-Spotty Material Breakthrough: Researchers Master Self-assembly Of Novel Nanodots." ScienceDaily. ScienceDaily, 1 September 2004. <www.sciencedaily.com/releases/2004/09/040901092526.htm>.
National Science Foundation. (2004, September 1). Not-So-Spotty Material Breakthrough: Researchers Master Self-assembly Of Novel Nanodots. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2004/09/040901092526.htm
National Science Foundation. "Not-So-Spotty Material Breakthrough: Researchers Master Self-assembly Of Novel Nanodots." ScienceDaily. www.sciencedaily.com/releases/2004/09/040901092526.htm (accessed April 17, 2014).

Share This



More Matter & Energy News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com
Industry's Optimism Shines At New York Auto Show

Industry's Optimism Shines At New York Auto Show

Newsy (Apr. 16, 2014) After seeing auto sales grow last month, there's plenty for the industry to celebrate as it rolls out its newest designs. Video provided by Newsy
Powered by NewsLook.com
Ford Mustang Fetes Its 50th Atop Empire State Building

Ford Mustang Fetes Its 50th Atop Empire State Building

AFP (Apr. 16, 2014) Ford celebrated the 50th birthday of its beloved Mustang by displaying a new model of the convertible on top of the Empire State Building in New York. Duration: 00:28 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins