Featured Research

from universities, journals, and other organizations

'Defensive' Action By Influenza Viruses Demonstrated By Hebrew University Researcher

Date:
September 7, 2004
Source:
Hebrew University Of Jerusalem
Summary:
Combating viruses is often a frustrating business. Find a way to destroy them --- and before you know it, they've found a way to defend themselves and neutralize the anti-viral treatment. How, exactly, do the viruses do it?

Combating viruses is often a frustrating business. Find a way to destroy them --- and before you know it, they've found a way to defend themselves and neutralize the anti-viral treatment.

How, exactly, do the viruses do it? In an article published as the cover story in a recent issue of the journal Proteins, a Hebrew University of Jerusalem researcher, Prof. Isaiah (Shy) T. Arkin, has revealed just how influenza-causing viruses adapt to nullify the effectiveness of the anti-viral drug symmetrel (generic name).

The revelation can have significant consequences in leading drug researchers to develop new and more effective means to block influenza and other viruses in the future.

Influenza, Prof. Arkin emphasizes, is a major killer, even though many people tend to shrug it off as an unpleasant seasonal nuisance. In the U.S. it is the leading cause of death from infectious diseases, claiming about 40,000 lives annually, mostly among the elderly.

In his research, Arkin, of the Department of Biological Chemistry at the Hebrew University's Silberman Institute of Life Sciences, has demonstrated how flu viruses counteract the symmetrel drug. Assisting him in his work were graduate students Peleg Astrahan and Itamar Kass, as well as Dr. Matt Cooper from Cambridge University in Britain.

Administered at an early stage at the onset of flu symptoms, symmetrel is intended to destroy the virus by binding to and blocking a proton-conducting channel which the virus needs in order to continue functioning and multiplying.

Rather than conceding defeat, however, the virus takes its own counteractions: either by narrowing its channel to the extent that the blocking element in the drug is unable to bind and create a seal, or by widening its channel so that the blocker can get in, but can't totally seal the channel. Arkin notes that the latter action is the more surprising and unexpected one.

While counteraction of the virus to the drug has been previously noted, this is the first time that the activity that lies behind this phenomenon has been demonstrated, said Arkin. This is because researchers had previously only concentrated on examining the binding action of the blocker to the viruses, but not the process taking place in the viruses'channel. Thus, there was only a limited picture of what was actually happening.

This new information on the mutating abilities of the influenza virus will have to be taken into consideration in further anti-viral research, said Arkin.


Story Source:

The above story is based on materials provided by Hebrew University Of Jerusalem. Note: Materials may be edited for content and length.


Cite This Page:

Hebrew University Of Jerusalem. "'Defensive' Action By Influenza Viruses Demonstrated By Hebrew University Researcher." ScienceDaily. ScienceDaily, 7 September 2004. <www.sciencedaily.com/releases/2004/09/040907083017.htm>.
Hebrew University Of Jerusalem. (2004, September 7). 'Defensive' Action By Influenza Viruses Demonstrated By Hebrew University Researcher. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2004/09/040907083017.htm
Hebrew University Of Jerusalem. "'Defensive' Action By Influenza Viruses Demonstrated By Hebrew University Researcher." ScienceDaily. www.sciencedaily.com/releases/2004/09/040907083017.htm (accessed April 19, 2014).

Share This



More Health & Medicine News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nine-Month-Old Baby Can't Open His Mouth

Nine-Month-Old Baby Can't Open His Mouth

Newsy (Apr. 19, 2014) Nine-month-old Wyatt Scott was born with a rare disorder called congenital trismus, which prevents him from opening his mouth. Video provided by Newsy
Powered by NewsLook.com
'Holy Grail' Of Weight Loss? New Find Could Be It

'Holy Grail' Of Weight Loss? New Find Could Be It

Newsy (Apr. 18, 2014) In a potential breakthrough for future obesity treatments, scientists have used MRI scans to pinpoint brown fat in a living adult for the first time. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins