Featured Research

from universities, journals, and other organizations

Engineers Model Effects Of Hurricane Force Winds On Structures

Date:
September 10, 2004
Source:
Virginia Tech
Summary:
As the rains from the downgraded Hurricane Frances move northward while the eastern U.S. continues to watch Hurricane Ivan's approach, the destruction from the heavy winds and rains is mounting into the billions of dollars. In most cases, low-rise buildings, including residential, institutional, and commercial structures are the most vulnerable and carry the brunt of the damage and losses from extreme wind.

Blacksburg, Va. -- As the rains from the downgraded Hurricane Frances move northward while the eastern U.S. continues to watch Hurricane Ivan's approach, the destruction from the heavy winds and rains is mounting into the billions of dollars.

Related Articles


In Florida alone, initial estimates for losses caused by Frances were between $2 and 4 billion following the projected $7.4 billion in insured damages from Hurricane Charley, according to Reuters News Service.

In most cases, low-rise buildings, including residential, institutional, and commercial structures are the most vulnerable and carry the brunt of the damage and losses from extreme wind.

"Engineers have the ability to theoretically understand and simulate how a storm will impact a structure," said Muhammad Hajj, professor of engineering science and mechanics at Virginia Tech. "This ability, however, needs to be complemented with computational power such as the supercomputing system developed at Virginia Tech to obtain reliable values for wind loads," he said.

Hajj and his Virginia Tech colleagues, Professors Henry Tieleman and Saab Ragab in Engineering Science and Mechanics, and Finley Charney in Civil and Environmental Engineering, are a part of the Hurricane Loss Reduction Consortium: Wind and Structural Engineering Initiative. The consortium members are Virginia Tech, Clemson University, University of Florida and the Johns Hopkins University. The National Institute of Standards and Technology (NIST) funded this consortium.

Although the American Society of Civil Engineers (ASCE) maintains minimum building codes, and builders follow these codes "as a first basis," Hajj said, "there is still a wide fluctuation in the standards used." Hajj also notes that complex terrains of mountainous areas (as in the Carolinas, Virginia and some of the Caribbean Islands) create excessive turbulence that may cause increased wind loads."

In addition to differences in terrain, existing codes do not address how other factors contribute to damage to low-rise buildings. "As wind impacts a structure, different parameters such as duration of extreme loads, connector types, missing connectors, shoddy workmanship, and below-standard materials will determine the extent of damage," Hajj said. He and his colleagues are working on modeling these effects as well.

The researchers of the Hurricane Loss Reduction Consortium have instrumented homes along the Florida coast that were subjected to the winds of various storms such as Tropical Storm Isodore and Hurricanes Bonnie, Dennis and Floyd. They have analyzed these results and made preliminary comparisons to wind tunnel results. "The wind tunnel simulations are indeed capable of reproducing average values of wind loads, but appreciable differences may arise when considering local values," the team members from Virginia Tech explained in a progress report to NIST.

As the consortium continues its work, its long-term objective is to provide a full computational platform to calculate wind loads and structural capacities of low-rise buildings and to incorporate the findings into regional and national codes. Ultimately, the hope is to appreciably reduce damage and increase safety.

At Virginia Tech, the efforts are also a part of the recently established Center of Extreme Load Effects on Structures under Virginia Tech's Institute for Critical Technology and Applied Science initiative.


Story Source:

The above story is based on materials provided by Virginia Tech. Note: Materials may be edited for content and length.


Cite This Page:

Virginia Tech. "Engineers Model Effects Of Hurricane Force Winds On Structures." ScienceDaily. ScienceDaily, 10 September 2004. <www.sciencedaily.com/releases/2004/09/040910080622.htm>.
Virginia Tech. (2004, September 10). Engineers Model Effects Of Hurricane Force Winds On Structures. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2004/09/040910080622.htm
Virginia Tech. "Engineers Model Effects Of Hurricane Force Winds On Structures." ScienceDaily. www.sciencedaily.com/releases/2004/09/040910080622.htm (accessed October 25, 2014).

Share This



More Matter & Energy News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins