Featured Research

from universities, journals, and other organizations

First Glimpse Of DNA Binding To Viral Enzyme; May Serve As New Target For Antiviral Drugs

Date:
September 14, 2004
Source:
Brookhaven National Laboratory
Summary:
Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory and the Albert Einstein College of Medicine have produced the first molecular-scale images of DNA binding to an adenovirus enzyme — a step they believe is essential for the virus to cause infection.

Two views of the adenovirus protease, an enzyme required for viral replication. DNA, depicted by the white "sticks," is shown binding to the enzyme on the right. Drugs that prevent the DNA from binding should prevent the virus from replicating and stop an infection.
Credit: Image courtesy of Brookhaven National Laboratory

UPTON, NY - Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory and the Albert Einstein College of Medicine have produced the first molecular-scale images of DNA binding to an adenovirus enzyme — a step they believe is essential for the virus to cause infection. The images, which appear on the cover of the October 2004 issue of Molecular and Cellular Proteomics, show how binding to DNA may stimulate the enzyme and are already being used to design new antiviral drugs to block this interaction.

“We were quite surprised to see that DNA actually stimulated the activity of the enzyme,” said Brookhaven biologist Walter Mangel, a co-author on the paper. “If we can block this interaction, we should be able to prevent the virus from replicating, and thereby thwart infection.”

Adenoviruses cause respiratory, gastrointestinal, and eye infections, including highly contagious viral pink eye. Some adenovirus eye infections lead to blindness. Respiratory epidemics of adenovirus are often prevalent on army bases. And in patients with compromised immune systems, such as those infected with human immunodeficiency virus (HIV), an opportunistic adenovirus infection can be deadly.

During infection, adenovirus makes an enzyme called a protease, which cleaves or degrades viral “scaffolding” proteins to complete the maturation of newly synthesized virus particles. Mangel and others have been working to understand all the steps necessary for this enzyme’s function, looking for new ways to stop its action and, therefore, block an adenovirus infection (see: http://www.bnl.gov/discover/Spring_04/anti_viral_1.asp ).

The scientists didn’t expect the viral DNA to bind to the protease, but they figured they should look just to rule out such an interaction. “It was something we had to do, to make sure they did not interact,” Mangel said. The discovery that the viral DNA interacts with the protease was unprecedented and led them to characterize the interaction in detail. The scientists now believe that inside the virus particle the protease uses the DNA as a guide wire, sliding along the genetic material to remove the internal “scaffolding” proteins, all located near the DNA.

The team used a technique called synchrotron footprinting, which was pioneered by paper co-author Mark Chance and his colleagues at the Albert Einstein College of Medicine, to show where DNA binds on the adenovirus protease.

“Synchrotron footprinting is a technique recently developed at Einstein that allows structural information on the contacting surfaces of biological molecules to be precisely mapped. These contact points are regions providing critical communication in the cell,” Chance explained. “In this study the footprinting approach provided information on the DNA binding region of the adenovirus protease that has not been solved by other techniques and can be used in drug design.”

At the National Synchrotron Light Source — a facility that produces extremely bright beams of x-ray, infrared, and ultraviolet light at Brookhaven Lab — Einstein’s Sayan Gupta, the study’s lead author, bombarded different solutions of the adenovirus protease and DNA with x-rays and characterized the changes that occurred on the surface of the protein. With this technique, the team was able to deduce the location of the DNA binding site based upon the changes in accessible surface area.

“There is extensive contact between the enzyme and the DNA,” Gupta said. “The DNA wraps around more than half the enzyme molecule. It appears like a strap, holding two parts of the protease together.”

Since the DNA binding site is quite long, there are numerous locations along it that could be used as targets for drugs to block the interaction and act as antiviral agents, Mangel said. The scientists have already begun looking for such drugs and hope to have the National Institutes of Health test some of them for anti-viral activity within a year.

This work was funded by the Office of Biological and Environmental Research within the U.S. Department of Energy’s Office of Science, the Biotechnology Resource Centers Program of the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health, and by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health.


Story Source:

The above story is based on materials provided by Brookhaven National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Brookhaven National Laboratory. "First Glimpse Of DNA Binding To Viral Enzyme; May Serve As New Target For Antiviral Drugs." ScienceDaily. ScienceDaily, 14 September 2004. <www.sciencedaily.com/releases/2004/09/040914092602.htm>.
Brookhaven National Laboratory. (2004, September 14). First Glimpse Of DNA Binding To Viral Enzyme; May Serve As New Target For Antiviral Drugs. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2004/09/040914092602.htm
Brookhaven National Laboratory. "First Glimpse Of DNA Binding To Viral Enzyme; May Serve As New Target For Antiviral Drugs." ScienceDaily. www.sciencedaily.com/releases/2004/09/040914092602.htm (accessed September 21, 2014).

Share This



More Matter & Energy News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

What This MIT Sensor Could Mean For The Future Of Robotics

What This MIT Sensor Could Mean For The Future Of Robotics

Newsy (Sep. 20, 2014) MIT researchers developed a light-based sensor that gives robots 100 times the sensitivity of a human finger, allowing for "unprecedented dexterity." Video provided by Newsy
Powered by NewsLook.com
MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com
New Music With Recycled Instruments at Colombia Fest

New Music With Recycled Instruments at Colombia Fest

AFP (Sep. 19, 2014) Jars, bottles, caps and even a pizza box, recovered from the trash, were the elements used by four musical groups at the "RSFEST2014 Sonorities Recycling Festival", in Colombian city of Cali. Duration: 00:49 Video provided by AFP
Powered by NewsLook.com
Virtual Reality Headsets Unveiled at Tokyo Game Show

Virtual Reality Headsets Unveiled at Tokyo Game Show

AFP (Sep. 18, 2014) Several companies unveiled virtual reality headsets at the Tokyo Game Show, Asia's largest digital entertainment exhibition. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins