Featured Research

from universities, journals, and other organizations

Researchers Eliminate Leukemia In Mice, Demonstrating Potential New Approach To Cancer Drug Therapy

Date:
September 21, 2004
Source:
Dana-Farber Cancer Institute
Summary:
Scientists at Dana-Farber Cancer Institute have corrected a flaw in cancer cells that lets them evade the normal cell-death process, and as a result they eliminated leukemia cells from mice. With this achievement, the researchers confirm that a key anti-cell-death molecule called BCL-2 is required by many types of cancer cells to survive, and that silencing it with designer drugs may prove to be an effective new avenue for cancer therapy.

BOSTON -- Scientists at Dana-Farber Cancer Institute have corrected a flaw in cancer cells that lets them evade the normal cell-death process, and as a result they eliminated leukemia cells from mice. With this achievement, the researchers confirm that a key anti-cell-death molecule called BCL-2 is required by many types of cancer cells to survive, and that silencing it with designer drugs may prove to be an effective new avenue for cancer therapy.

Related Articles


Using drugs to manipulate apoptosis, or "programmed cell death" in cancers "is a new paradigm that hasn't been well explored yet," said Anthony Letai, MD, PhD, in the laboratory of Stanley Korsmeyer at Dana-Farber. "What better way to kill cancer cells than targeting the molecules that directly control their survival?"

Letai is the lead author and Korsmeyer, a Howard Hughes Medical Institute investigator, is the senior author of a report published in the Sept. 21 issue of Cancer Cell. The other authors are Mia D. Sorcinelli and Caroline Beard. The report describes an experiment with laboratory mice genetically modified to be highly prone to developing leukemia. The mice were also modified so that the BCL-2 protein could be turned off by adding an antibiotic to the animals' water.

The scientists observed 28 mice, which, at 5 to 7 weeks of age, had developed leukemia. Fourteen were given the antibiotic in their water to turn off the BCL-2 genes. Within three days, the treated animals had a decline in leukemia cells and their white blood cell counts became normal within 10 days.

There was no such improvement in the untreated mice, whose cancers resisted death because of their active BCL-2 genes: they all died by just over 100 days of age. By contrast, five of the mice with silenced BCL-2 genes survived for over 200 days, and one of them lived more than a year. The findings confirmed a previously untested notion that cancer cells could not maintain their malignant behavior – growing out of control, invading normal tissues, spreading to other parts of the body – in the absence of BCL-2, and, further, that muzzling that "survival" molecule in cancer cells would allow them to self-destruct.

"This is the first specific evidence that removal of an apoptotic defect by itself can kill cancer in a living organism," said Letai. Apoptosis is a normal quality-control process within cells. In response to signals from their environment or signals from their own internal damage-sensors, a series of molecular interactions cause cells to release a lethal chemical that destroys them. Through apoptosis, the body can rid itself of cells that are no longer needed or are superfluous in embryonic development, or have sustained damage to their DNA and therefore should not live to reproduce.

But in cancer, despite the cells' damaged DNA and other abnormalities, the self-destruct signals are blocked by proteins belonging to the BCL-2 family: these molecules act as a check on apoptosis, and cancer cells take advantage of their inhibitory effect by making an excess of BCL-2 proteins. As a result, the death signals never reach their targets and the cell continues to live on and proliferate uncontrollably.

Overexpression of BCL-2 has been observed in many types of cancer, and was first discovered in lymphoma cells. Scientists speculated that overactive BCL-2 might be required by cancerous cells to survive in the face of the apoptosis process attempting to kill the cells, but the question hadn't been directly tested.

The experimental results provide strong support, the authors wrote, for the theory that blocking BCL-2 would be toxic to cancer cells. While mice lacking BCL-2 throughout their lives show abnormalities including altered regulation of their immune response, said Letai, their survival nonetheless suggests that treating humans with a BCL-2 inhibiting drug for a defined period of time should be tolerable. Drugs that block BCL-2 exist but have not been tested in humans, but Letai and his colleagues are working with a drug company on the preclinical development of such a drug.

###The study was funded by grants from the National Institutes of Health, the American Society for Hematology Scholar Award Program, and the Claudia Adams Barr Foundation.

Dana-Farber Cancer Institute (http://www.danafarber.org) is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), a designated comprehensive cancer center by the National Cancer Institute.


Story Source:

The above story is based on materials provided by Dana-Farber Cancer Institute. Note: Materials may be edited for content and length.


Cite This Page:

Dana-Farber Cancer Institute. "Researchers Eliminate Leukemia In Mice, Demonstrating Potential New Approach To Cancer Drug Therapy." ScienceDaily. ScienceDaily, 21 September 2004. <www.sciencedaily.com/releases/2004/09/040921080755.htm>.
Dana-Farber Cancer Institute. (2004, September 21). Researchers Eliminate Leukemia In Mice, Demonstrating Potential New Approach To Cancer Drug Therapy. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2004/09/040921080755.htm
Dana-Farber Cancer Institute. "Researchers Eliminate Leukemia In Mice, Demonstrating Potential New Approach To Cancer Drug Therapy." ScienceDaily. www.sciencedaily.com/releases/2004/09/040921080755.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rural India's Low-Cost Sanitary Pad Revolution

Rural India's Low-Cost Sanitary Pad Revolution

AFP (Nov. 28, 2014) — One man hopes his invention -– a machine that produces cheap sanitary pads –- will help empower Indian women. Duration: 01:51 Video provided by AFP
Powered by NewsLook.com
Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) — In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
WHO Says Male Ebola Survivors Should Abstain From Sex

WHO Says Male Ebola Survivors Should Abstain From Sex

Newsy (Nov. 28, 2014) — WHO cites four studies that say Ebola can still be detected in semen up to 82 days after the onset of symptoms. Video provided by Newsy
Powered by NewsLook.com
Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins