Featured Research

from universities, journals, and other organizations

At Molecular Scale, Vibrational Couplings Define Heat Conduction

Date:
September 29, 2004
Source:
University Of Illinois At Urbana-Champaign
Summary:
Too much heat can destroy a sturdy automobile engine or a miniature microchip. As scientists and engineers strive to make ever-smaller nanoscale devices, from molecular motors and switches to single-molecule transistors, the control of heat is becoming a burning issue.

CHAMPAIGN, Ill. -- Too much heat can destroy a sturdy automobile engine or a miniature microchip. As scientists and engineers strive to make ever-smaller nanoscale devices, from molecular motors and switches to single-molecule transistors, the control of heat is becoming a burning issue.

Related Articles


The shapes of molecules really matter, say scientists from the University of Illinois at Urbana-Champaign and the University of Scranton who timed the flow of vibrational heat energy through a water-surfactant-organic solvent system. The rate at which heat energy moves through a molecule depends specifically on the molecule's structure, they found.

"The flow of vibrational energy across a molecule is dependent upon where and how the energy is deposited," said Dana Dlott, a professor of chemistry at Illinois and a co-author of a paper to appear in the journal Science, as part of the Science Express Web site, on Sept. 23. "Unlike normal heat conduction, different excitations may travel across the molecule along different paths and at different rates."

To monitor energy flow, Dlott and his colleagues – Scranton chemistry professor John Deak, Illinois postdoctoral research associate Zhaohui Wang and graduate student Yoonsoo Pang, and Scranton undergraduate student Timothy Sechler – used an ultrafast laser spectrometer technique with picosecond time resolution.

The system the scientists studied is called a reverse micelle, and consisted of a nanodroplet containing 35 water molecules enclosed in a sphere of surfactant (sodium dioctyl sulfosuccinate) one molecule thick that was suspended in carbon tetrachloride. The ultrafast laser technique, developed at Illinois, monitored vibrational energy flow as it moved from water, through the surfactant shell out to the organic solvent, atom by atom.

When the researchers deposited energy in the nanodroplet, the vibrations moved through the surfactant and into the carbon tetrachloride within 10 picoseconds. However, when the energy was deposited directly into the surfactant, the vibrations required 20 to 40 picoseconds to move into the carbon tetrachloride. Even though the distance was shorter, the energy transfer took significantly longer.

"This is opposite of what you would think in terms of simple and ordinary heat conduction," Dlott said. "To explain this strange result, we have to analyze the energy transfer in terms of specific vibrational couplings that occur through a vibrational cascade."

There are hundreds of different vibrations in the water-surfactant-organic solvent system, Dlott said. "When energy moves through molecules, the detailed structure of the molecules and the way the vibrations interact are extremely important."

When the water was excited by a laser pulse, the scientists report, much of the energy was immediately moved to the surfactant, which then efficiently transferred the energy to the carbon tetrachloride. But when the surfactant was excited by the laser, the energy took a different path among the atoms, delaying the transfer to the carbon tetrachloride.

"The movement of vibrational energy within and between molecules is a fundamental process that plays a significant role in condensed matter physics and chemistry," Dlott said. "In designing nanoscale devices, the shapes of the molecules must be designed not only to be small and fast, but also to efficiently move heat."

The National Science Foundation, the Air Force Office of Scientific Research and the U.S. Department of Energy supported this work.


Story Source:

The above story is based on materials provided by University Of Illinois At Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Urbana-Champaign. "At Molecular Scale, Vibrational Couplings Define Heat Conduction." ScienceDaily. ScienceDaily, 29 September 2004. <www.sciencedaily.com/releases/2004/09/040928101621.htm>.
University Of Illinois At Urbana-Champaign. (2004, September 29). At Molecular Scale, Vibrational Couplings Define Heat Conduction. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2004/09/040928101621.htm
University Of Illinois At Urbana-Champaign. "At Molecular Scale, Vibrational Couplings Define Heat Conduction." ScienceDaily. www.sciencedaily.com/releases/2004/09/040928101621.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Newsy (Nov. 23, 2014) Microsoft has robotic security guards working at its Silicon Valley Campus. Video provided by Newsy
Powered by NewsLook.com
Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins