Featured Research

from universities, journals, and other organizations

Purdue Researchers Align Nanotubes To Improve Artificial Joints

Date:
November 29, 2004
Source:
Purdue University
Summary:
Researchers at Purdue University have shown that artificial joints might be improved by making the implants out of tiny carbon tubes and filaments that are all aligned in the same direction, mimicking the alignment of collagen fibers and natural ceramic crystals in real bones.

This image, taken with a scanning electron microscope, shows arrays of nanofibers that have been aligned by pouring them into grids of tiny channels. Because the channels are so narrow, the tubes can only fit lengthwise, causing them to become aligned, similar to the way in which collagen fibers and natural ceramic crystals are aligned in bones. Because the nanofibers are aligned like natural collagen, they might be used to create better artificial joints that last longer and attach better to human bones. (Purdue University, Department of Biomedical Engineering and Department of Physics)

WEST LAFAYETTE, Ind. – Researchers at Purdue University have shown that artificial joints might be improved by making the implants out of tiny carbon tubes and filaments that are all aligned in the same direction, mimicking the alignment of collagen fibers and natural ceramic crystals in real bones.

The researchers already have shown in a series of experiments that bone cells in Petri dishes attach better to materials that possess smaller surface bumps than are found on conventional materials used to make artificial joints. The smaller features also stimulate the growth of more new bone tissue, which is critical for the proper attachment of artificial joints once they are implanted.

Now, the Purdue researchers have shown even more enhanced cell adhesion and growth when so-called "nanotubes" and nanofibers are aligned in the same direction. This orientation is similar to the way collagen and natural ceramic crystals, called hydroxyapatite, are aligned in bone, said Thomas Webster, an assistant professor of biomedical engineering at Purdue.

Findings were presented at two recent scientific conferences in research papers written by Webster; Purdue physics doctoral student Dongwoo Khang; and three researchers from the Seoul National University in South Korea, physics doctoral students Minbaek Lee and Sun Namkung, and physics professor Seunghun Hong.

Previous experiments in the Purdue lab have shown that about one-third more bone-forming cells, or osteoblasts, attach to carbon nanotubes that possess surface bumps about as wide as 100 nanometers, or billionths of a meter. Fewer bone cells stick to conventional titanium, which has surface features on the scale of microns, or millionths of a meter.

The nanometer-scale bumps mimic surface features of proteins and natural tissues, prompting cells to stick better and promoting the growth of new cells, Webster said. The findings also suggest that using such nanometer-scale materials might cause less of a rejection response from the body. Rejection eventually weakens the attachment of implants and causes them to become loose and painful, requiring replacement surgery.

Aligning the nanotubes to further mimic natural bone also might provide more strength, Webster said.

Researchers used two methods to align the tiny nanotube structures, which have diameters of about 60 nanometers. One nanometer is roughly the length of 10 hydrogen atoms strung together. A human hair is more than 1,000 times wider than the nanotubes used in the study.

In one method, researchers mixed the nanotubes in a polymer, or plastic, and passed an electric current through the mixture. Because nanotubes have the same natural electrical charge, they react to electricity by orienting themselves in the same direction. Once the polymer solidifies, the nanotubes are fixed in the aligned position.

The research team also aligned the nanotubes using another method in which the nanotubes are poured into grids of tiny channels. Because the channels are so narrow, the tubes can only fit lengthwise, causing them to become aligned. The grids can then be removed, leaving behind the aligned nanotubes.

The researchers then added the aligned nanotubes to a suspension of dyed bone cells in a small container. After one hour, the nanotubes were washed and a microscope was used to count how many of the dyed osteoblasts adhered to the material. Out of 3,000 bone cells per square centimeter of surface area, about 80 percent specifically stuck to and aligned with the carbon nanotubes – or about twice as many as those that adhered to non-aligned nanotubes in previous work.

"So, in a very short period of time, one hour, we're already seeing a big improvement in how well the cells stick to the nanotubes," Webster said.

Future research may focus on combining the two methods for aligning nanotubes. Using the grid technique creates a greater number of aligned nanotubes on the surface, which helps to increase bone-cell adhesion and alignment, whereas using electricity could better stimulate the growth of new bone tissue.

The research has been funded by the National Science Foundation though the NSF Nanoscale Exploratory Research program.

Findings were presented in October during the Biomedical Engineering Society's annual meeting and a conference by the Society for Biomaterials entitled Biomaterials in Regenerative Medicine: The Advent of Combination Products. Both meetings were in Philadelphia.


Story Source:

The above story is based on materials provided by Purdue University. Note: Materials may be edited for content and length.


Cite This Page:

Purdue University. "Purdue Researchers Align Nanotubes To Improve Artificial Joints." ScienceDaily. ScienceDaily, 29 November 2004. <www.sciencedaily.com/releases/2004/11/041123115504.htm>.
Purdue University. (2004, November 29). Purdue Researchers Align Nanotubes To Improve Artificial Joints. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2004/11/041123115504.htm
Purdue University. "Purdue Researchers Align Nanotubes To Improve Artificial Joints." ScienceDaily. www.sciencedaily.com/releases/2004/11/041123115504.htm (accessed August 22, 2014).

Share This




More Matter & Energy News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Is It a Plane? No, It's a Hoverbike

Is It a Plane? No, It's a Hoverbike

Reuters - Business Video Online (Aug. 22, 2014) UK-based Malloy Aeronautics is preparing to test a manned quadcopter capable of out-manouvering a helicopter and presenting a new paradigm for aerial vehicles. A 1/3-sized scale model is already gaining popularity with drone enthusiasts around the world, with the full-sized manned model expected to take flight in the near future. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Coal Gas Boom in China Holds Climate Risks

Coal Gas Boom in China Holds Climate Risks

AP (Aug. 22, 2014) China's energy revolution could do more harm than good for the environment, despite the country's commitment to reducing pollution and curbing its carbon emissions. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Newsy (Aug. 21, 2014) Researchers found the scanners could be duped simply by placing a weapon off to the side of the body or encasing it under a plastic shield. Video provided by Newsy
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins