Featured Research

from universities, journals, and other organizations

Innovative Metagenomics Strategy Used To Study Oral Microbes

December 20, 2004
The Institute For Genomic Research
The mouth is awash in microbes, but scientists so far have merely scratched the surface in identifying and studying the hundreds of bacteria that live in biofilm communities that stick to the teeth and gums.

Rockville, MD - The mouth is awash in microbes, but scientists so far have merely scratched the surface in identifying and studying the hundreds of bacteria that live in biofilm communities that stick to the teeth and gums.

Related Articles

In an innovative new project that could help improve the detection and treatment of oral diseases, scientists are now using a metagenomics strategy to analyze the complex and difficult-to-study community of microbes in the oral cavity.

The project is being led by scientists at The Institute for Genomic Research (TIGR) and Stanford University. It is sponsored by the National Institute of Dental and Craniofacial Research (NIDCR), which is part of the National Institutes of Health.

In recent years, molecular methods have indicated that there are well over 400 species of bacteria in the oral cavity. But, so far, only about 150 of those species have been cultured in laboratories and given scientific names. Using a metagenomics sequencing strategy, TIGR scientists will be able to identify bits and pieces of the DNA of many of those oral microbes that so far have not been grown in labs and studied.

The implications of the project are far-reaching, for some of those bacteria are related to periodontal disease - the chronic infection of the tissues surrounding the teeth that affects nearly 50 million people a year in the United States alone. The study will contrast the oral biofilms in healthy persons and those suffering from periodontitis. Researchers also will examine which genes are activated or turned off when the disease if present.

"The oral project marks the first time that metagenomics has been used on a large scale for biomedical research on humans," says Steven Gill, a TIGR Associate Investigator who is the project's lead investigator. "Because biofilm samples can readily be obtained from the mouth, it's a logical site for initiating a human metagenomics effort."

The mouth's microbial communities tend to congregate in biofilms - sticky, mat-like films that often include hundreds of distinct organisms that cooperate with each other to adapt to changes in their environment. "With biofilms, the sum is definitely greater than the individual parts," says TIGR Associate Investigator Karen E. Nelson, who is a co-investigator on the project.

In the past, TIGR and other labs have concentrated mainly on sequencing the genomes of one bacterium at a time. While that data is extremely useful, scientists believe that a more comprehensive genomic analysis of the hundreds of microbes in the oral cavity will lead to added insights about the bacterial biofilms and the interactions among microbes.

The biofilm scrapings from several sites in the mouth - including the palate, subgingival crevices, tongue, and inner cheek - are being collected by a lab headed by Gary Armitage of the University of California at San Francisco School of Dentistry. Those samples will be sent to David Relman's laboratory at Stanford University, which will extract the DNA and ship the material to TIGR for metagenomic sequencing. That genomic data then will be analyzed by scientists at TIGR and at Relman's lab.

The analysis is expected to find tens of thousands of genes as well as large fragments - in some cases, perhaps full genomes - of oral-cavity bacteria that scientists had not studied previously. Using microarray technology, the scientists will also examine patterns of gene expression in the biofilm communities. Researchers will also study the function and structure of important predicted proteins derived from these organisms. All of the genomic data will be stored in a searchable online database that is accessible free of charge to researchers worldwide.

At TIGR, the oral microbiome sequencing dovetails into an ambitious wider effort to decipher the DNA sequences of an array of bacteria that play roles in periodontal disease. In addition to the oral biofilm analysis, TIGR scientists are at various stages in the sequencing and analysis of the genomes of eight oral-cavity microbes:

* Porphymonas gingivalis, whose genome sequence was published in 2003, plays an important role in periodontal disease. That NIDCR-supported project was led by TIGR's Nelson and Rob Fleischmann in collaboration with scientists at The Forsyth Institute, a research center in Boston, MA.

* Treponema denticola, a spirochete involved in periodontal disease whose closest bacterial relative is the microbe that causes syphilis. That sequence was published in April 2004. TIGR's Ian Paulsen and Rekha Seshadri led the project.

* Prevotella intermedia, a black-pigmented bacterium that has been implicated in many forms of human periodontal diseases, including periodontitis and certain types of gingivitis. John Heidelberg is TIGR's lead researcher on the project.

* Actinomyces naeslundii, a sort of glue bug that is part of the complex of bacteria that are associated with gingivitis. Garry Myers of TIGR is working on it.

* Bacteriodes forsythus, an oral pathogen that has been associated with periodontal diseases, such as chronic and severe adult periodontitis. Gill is leading that team.

* Three Streptococcus species that are early colonizers, growing on the surface of the teeth and forming a substratum of plaque to which secondary colonizing microbes attach, sometimes leading to periodontal disease.

TIGR is compiling a database to compare all sequenced streptococcal species and strains, including three often found in the mouth that are being sequenced: S. gordonii, one of the first colonizers of dental plaque; S. sobrinus, which differs from S. gordonii in that it produces acid which lowers the pH in the oral environment, playing a role in the advent of tooth decay; and S. mitis, yet another early colonizer of tooth surfaces that does not in itself cause disease but may contribute to the later growth of pathogens. Gill and TIGR's Hervι Tettelin are conducting that study.

NIDCR, which is part of the National Institutes of Health, is the nation's leading funder of research on oral, dental and craniofacial health. See the NIDCR press release at: http://www.nih.gov/news/pr/dec2004/nidcr-07.htm

Story Source:

The above story is based on materials provided by The Institute For Genomic Research. Note: Materials may be edited for content and length.

Cite This Page:

The Institute For Genomic Research. "Innovative Metagenomics Strategy Used To Study Oral Microbes." ScienceDaily. ScienceDaily, 20 December 2004. <www.sciencedaily.com/releases/2004/12/041219195301.htm>.
The Institute For Genomic Research. (2004, December 20). Innovative Metagenomics Strategy Used To Study Oral Microbes. ScienceDaily. Retrieved January 29, 2015 from www.sciencedaily.com/releases/2004/12/041219195301.htm
The Institute For Genomic Research. "Innovative Metagenomics Strategy Used To Study Oral Microbes." ScienceDaily. www.sciencedaily.com/releases/2004/12/041219195301.htm (accessed January 29, 2015).

Share This

More From ScienceDaily

More Health & Medicine News

Thursday, January 29, 2015

Featured Research

from universities, journals, and other organizations

Featured Videos

from AP, Reuters, AFP, and other news services

Malnutrition on the Rise as Violence Flares in C. Africa

Malnutrition on the Rise as Violence Flares in C. Africa

AFP (Jan. 28, 2015) — Violence can flare up at any moment in Bambari with only a bridge separating Muslims and Christians. Malnutrition is on the rise and lack of water means simple cooking fires threaten to destroy makeshift camps where people are living. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Poultry Culled in Taiwan to Thwart Bird Flu

Poultry Culled in Taiwan to Thwart Bird Flu

Reuters - News Video Online (Jan. 28, 2015) — Taiwan culls over a million poultry in efforts to halt various strains of avian flu. Julie Noce reports. Video provided by Reuters
Powered by NewsLook.com
Media Criticizing Parents For Not Vaccinating Children

Media Criticizing Parents For Not Vaccinating Children

Newsy (Jan. 28, 2015) — As the Disneyland measles outbreak continues to spread, the media says parents who choose not to vaccinate their children are part of the cause. Video provided by Newsy
Powered by NewsLook.com
Shark Bite Victim Making Amazing Recovery

Shark Bite Victim Making Amazing Recovery

AP (Jan. 27, 2015) — A Texas woman who lost more than five pounds of flesh to a shark in the Bahamas earlier this month could be released from a Florida hospital soon. Experts believe she was bitten by a bull shark while snorkeling. (Jan. 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.


Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News


Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile

Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins