Featured Research

from universities, journals, and other organizations

Nanotubes Form Along Atomic Steps

Date:
January 12, 2005
Source:
Weizmann Institute
Summary:
The Weizmann Institute of Science has announced that a research group headed by Dr. Ernesto Joselevich has developed a new approach to create patterns of carbon nanotubes by formation along atomic steps on sapphire surfaces. Carbon nanotubes are excellent candidates for the production of nanoelectronic circuits, but their assembly into ordered arrays remains a major obstacle toward this application.

December 21, 2004 -- The Weizmann Institute of Science today announced that a research group headed by Dr. Ernesto Joselevich has developed a new approach to create patterns of carbon nanotubes by formation along atomic steps on sapphire surfaces. Carbon nanotubes are excellent candidates for the production of nanoelectronic circuits, but their assembly into ordered arrays remains a major obstacle toward this application.

The team was initially researching in a different direction: they were trying to give carbon nanotubes (structures reminiscent of rolled-up sheets of graphite) a preferred orientation on a wafer by applying an electrical field as the tubes were being formed. This works very well with silicon dioxide wafers. On a sapphire support (sapphire is a form of aluminum oxide), on the other hand, it didn't work: the nanotubes were beautifully arranged in parallel, but with an orientation that was completely independent of the electrical field – even when no field was applied at all.

Closer examination of the sapphire surface solved the mystery: commercial sapphire wafers are generally not cut exactly along the plane of the crystal. Their surface is thus not completely smooth; instead, it has parallel steps – of atomic dimensions – between the different planes of the crystal. The nanotubes wind up lying along these steps. The researchers explain it like this: the nanotubes form from a catalyst of iron nanoparticles and are attracted to a local field created by the steps. It is clear that these iron particles don't like "climbing stairs;" instead, they "glide" along the inner edge of the step, as though on a track. Thus they remain continuously in contact with two surfaces, rather than just one, which seems to stabilize the catalyst. Just as an airplane leaves behind a condensation trail, the iron particles leave the newly formed nanotubes lying along their "tracks." The nanotubes even follow kinks in the steps, which are caused by defects in the crystal. This results in either straight or zigzag-shaped tubes, which are expected to have particularly interesting electronic properties.

"The orientation and form of the atomic steps on a crystal surface can be controlled by the cutting process, and defects can be created artificially," says Joselevich. "It should thus be possible to produce different nanowire arrangements in a controlled fashion."

###

Dr. Joselvich's research is supported by the Asher and Jeannette Alhadeff Research Award, the Ilse Katz Institute for Material Sciences and Magnetic Resonance Research, the Philip M. Klutznick Fund for Research, Sir Harry A.S. Djanogly, CBE, UK and Sylvia and Henry Legrain, Spain. He is the incumbent of the Dr. Victor L. Ehrlich Career Development Chair.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,500 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.


Story Source:

The above story is based on materials provided by Weizmann Institute. Note: Materials may be edited for content and length.


Cite This Page:

Weizmann Institute. "Nanotubes Form Along Atomic Steps." ScienceDaily. ScienceDaily, 12 January 2005. <www.sciencedaily.com/releases/2005/01/050111182955.htm>.
Weizmann Institute. (2005, January 12). Nanotubes Form Along Atomic Steps. ScienceDaily. Retrieved September 15, 2014 from www.sciencedaily.com/releases/2005/01/050111182955.htm
Weizmann Institute. "Nanotubes Form Along Atomic Steps." ScienceDaily. www.sciencedaily.com/releases/2005/01/050111182955.htm (accessed September 15, 2014).

Share This



More Matter & Energy News

Monday, September 15, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) — Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) — New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com
Frustration As Drone Industry Outpaces Regulation In U.S.

Frustration As Drone Industry Outpaces Regulation In U.S.

Newsy (Sep. 14, 2014) — U.S. firms worry they’re falling behind in the marketplace as the FAA considers how to regulate commercial drones. Video provided by Newsy
Powered by NewsLook.com
Smart Gun Innovators Fear Backlash From Gun Rights Advocates

Smart Gun Innovators Fear Backlash From Gun Rights Advocates

Newsy (Sep. 14, 2014) — Winners of a contest for smart gun design are asking not to be named after others in the industry received threats for marketing similar products. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins