Featured Research

from universities, journals, and other organizations

University Of Michigan Scientists Develop First Micro-machined Mechanical Cochlea

Date:
February 7, 2005
Source:
University Of Michigan
Summary:
Scientists at the University of Michigan have developed the first micro-machined, life-sized, mechanical cochlea, the tiny organ responsible for converting acoustic vibrations into electrical signals for the brain to "read" and interpret as different sounds.

Schematic (not to scale) of the artifical cochlear device. (a) Cross-sectional cut along design centreline. (b) Top view of the design. A key feature is the exponentially tapered membrane width, which provides the varying acoustic impedance needed for cochlear-like frequency-position mapping. The width of the tapered membrane has been intentionally scaled up with respect to the rest of the drawing to improve visibility. Image and text: R White & K Grosh Proc. Nat. Acad. Sci.)

ANN ARBOR, Mich. -- Scientists at the University of Michigan have developed the first micro-machined, life-sized, mechanical cochlea, the tiny organ responsible for converting acoustic vibrations into electrical signals for the brain to "read" and interpret as different sounds.

Related Articles


Most people with hearing loss have lost the ability to translate acoustic sound waves into electrical signals for the brain, so developing a device capable of simulating this function is an important step in the effort to help at least some of the estimated 560 million people who will experience hearing loss by this year. While the U-M system is not yet ready for use as an implant, the 3-centimeter device could potentially be used as part of a cochlear implant. More immediate applications include a low-power sensor for military or commercial applications, said College of Engineering associate professor Karl Grosh.

The three advantages of the mechanical cochlea built at U-M are its life-sized dimensions, its suitability for mass production, and its use of a unique low-power mechanical method to do acoustic signal processing, Grosh said. The human cochlea is a snail-shaped organ measuring about a cubic centimeter in the inner ear. If you unwind the spiral, it would equal the length of the U-M mechanical cochlea. Researchers micro-machined the device using a technique similar to those used to make integrated circuits, which means it can be mass produced.

The mechanical cochlea works in the same way as its biological counterpart. In the biological cochlea, the basilar membrane, which winds along the cochlear spiral, is stiffer at the base and becomes softer as it approaches the center. In the engineered cochlea developed by Grosh and doctoral student Robert White, a fluid-filled duct etched onto a chip acts as the cochlear spiral. When sound waves enter the mechanical cochlea's input membrane, a wave is created, which travels down the duct, interacting with a tapered micro-machined membrane, analogous to the basilar membrane. This process allows the device to separate different frequency tones. In the biological cochlea, sensory hair cells in the spiral detect the sound waves traveling through the fluid, and translate the sound waves into electrical signals, which the auditory nerve carries to the brain. The ear hears different sounds depending on where the wave vibrates in the cochlea.

The goal is to use the mechanical cochlea as a sensitive microphone, perhaps in tandem with a cochlear implant, Grosh said, the same way an external microphone, a microprocessor and an antenna work together in present implants. Cochlear implants work by sending signals for different frequencies to electrodes implanted in the cochlear spiral. The auditory nerves then transport these signals to the brain. Researchers are adding arrays of sensors to the mechanical cochlea, which would make it possible to use the new device to drive the electrodes in a cochlear implant.

Grosh and White co-authored a paper "Microengineered Hydromechanical Cochlear Model," which appeared in the Proceedings of the National Academy of Sciences, Feb. 1, 2005.

The work is primarily funded by the National Science Foundation and the Office of Naval Research.


Story Source:

The above story is based on materials provided by University Of Michigan. Note: Materials may be edited for content and length.


Cite This Page:

University Of Michigan. "University Of Michigan Scientists Develop First Micro-machined Mechanical Cochlea." ScienceDaily. ScienceDaily, 7 February 2005. <www.sciencedaily.com/releases/2005/02/050205104015.htm>.
University Of Michigan. (2005, February 7). University Of Michigan Scientists Develop First Micro-machined Mechanical Cochlea. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2005/02/050205104015.htm
University Of Michigan. "University Of Michigan Scientists Develop First Micro-machined Mechanical Cochlea." ScienceDaily. www.sciencedaily.com/releases/2005/02/050205104015.htm (accessed October 24, 2014).

Share This



More Mind & Brain News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Academic Scandal Shocks UNC

Academic Scandal Shocks UNC

AP (Oct. 23, 2014) A scandal involving bogus classes and inflated grades at the University of North Carolina was bigger than previously reported, a new investigation found. (Oct. 23) Video provided by AP
Powered by NewsLook.com
Working Mother Getaway: Beaches Turks & Caicos

Working Mother Getaway: Beaches Turks & Caicos

Working Mother (Oct. 22, 2014) Feast your eyes on this gorgeous family-friendly resort. Video provided by Working Mother
Powered by NewsLook.com
What Your Favorite Color Says About You

What Your Favorite Color Says About You

Buzz60 (Oct. 22, 2014) We all have one color we love to wear, and believe it or not, your color preference may reveal some of your character traits. In celebration of National Color Day, Krystin Goodwin (@kyrstingoodwin) highlights what your favorite colors may say about you. Video provided by Buzz60
Powered by NewsLook.com
First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

Newsy (Oct. 21, 2014) A medical team has for the first time given a man the ability to walk again after transplanting cells from his brain onto his severed spinal cord. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins