Featured Research

from universities, journals, and other organizations

Map Of Human Genetic Variation Will Speed Search For Disease Genes

Date:
February 10, 2005
Source:
National Human Genome Research Institute
Summary:
The International HapMap Consortium, boosted by an additional $3.3 million in public-private support, today announced plans to create an even more powerful map of human genetic variation than originally envisioned. The map will accelerate the discovery of genes related to common diseases, such as asthma, cancer, diabetes and heart disease.

Bethesda, Maryland – The International HapMap Consortium, boosted by an additional $3.3 million in public-private support, today announced plans to create an even more powerful map of human genetic variation than originally envisioned. The map will accelerate the discovery of genes related to common diseases, such as asthma, cancer, diabetes and heart disease.

When the project was launched in October 2002, the consortium set September 2005 as the target for completing its map of common patterns of human genetic variation, also known as haplotypes. By the end of February 2005, however, the group already will have reached completion of its first draft of the human haplotype map, or HapMap, which will consist of 1 million markers of genetic variation, called single nucleotide polymorphisms (SNPs).

The consortium’s new goal is to build an improved version of the HapMap that is about five times denser than the original plan. This “Phase II” HapMap will take advantage of the rapid, high-throughput genotyping capacity of Perlegen Sciences, Inc., of Mountain View, Calif., to test another 4.6 million SNPs from publicly available databases, and add that information to the map. As a result of a grant competition last summer, Perlegen received a $6.1 million award from the National Human Genome Research Institute (NHGRI), part of the National Institutes of Health (NIH), to add data on 2.25 million additional SNPs to HapMap. The new development, enabled by a partnership among multiple funding sources, will expand that effort and test virtually the entire known catalog of human variation on the HapMap samples. This will increase the density of SNP “signposts” across the genome from the current average of one every 3,000 bases to about one every 600 bases.

“This will help us create a far more powerful HapMap than we ever imagined. We sincerely thank all those who are giving their time, technology and money to help turn this dream into reality. The payoff will be a better understanding of the genetic risk factors underlying a wide range of diseases and conditions,” said NHGRI Director Francis S. Collins, M.D., Ph.D.

The first phase of the HapMap Project has allowed scientists to make important analyses of the human genome that were not possible with just the human DNA sequence, and the International HapMap Consortium plans to publish its comprehensive analysis of this data later this year. The second phase of the project will provide researchers with a denser map that will enable them to more precisely narrow gene discovery to specific regions of the genome.

The effort to expand the HapMap is made possible by $3.3 million in additional support from a unique public-private partnership, including the following organizations: the Wellcome Trust, London, $624,000; Genome Canada/Genome Quebec, $260,000; Bristol-Myers Squibb Co., New York, $100,000; Pfizer Inc., New York, $100,000; Perlegen Sciences, at least $1.2 million (based on “in kind” services); and NHGRI, $1 million. The donations from the two pharmaceutical companies were coordinated by The SNP Consortium, Ltd., of Deerfield, Ill.

“Researchers are already using HapMap data to accelerate the search for genes involved in common diseases, as well as genes involved in drug responsiveness,” said Karen Kennedy, Ph.D., science program manager at the Wellcome Trust. “When the more comprehensive version of the HapMap is completed this fall, such studies will be able to be carried out with even greater speed and efficiency.”

To create the HapMap, DNA was taken from blood samples from volunteer donors from the following populations: Han Chinese in Beijing, Japanese in Tokyo, Yoruba in Ibadan, Nigeria and Utah residents with ancestry from northern and western Europe. No medical or personal identifying information was obtained from the 270 donors. However, the samples are identified by the population from which they were collected.

Although any two people are 99.9 percent identical at the genetic level, understanding the one-tenth of one percent difference is important because it helps explain why one person may be more susceptible to a certain disease than another. For any given disease, such as type II diabetes or coronary artery disease, researchers can use the HapMap to compare the genetic variation patterns of a group of people known to have the disease with a group of people without the disease. Finding a certain pattern more often in people with the disease identifies a genomic region that may contain genes contributing to the condition. Because the Phase II HapMap will be so detailed, researchers will be able to use its SNP signposts to zero in on that particular genomic region and search for specific genes involved in that disorder. This approach can reduce the work and expense of searching the genome for hereditary factors in common disease by a factor of 20 to 40 compared with current, brute force approaches.

“This new partnership underscores the private sector’s enthusiasm for the HapMap and its potential as a tool for the understanding of disease. The willingness of these firms to contribute to building an even better map follows the collaborative tradition established by The SNP Consortium,” said Arthur Holden, chairman and chief executive of The SNP Consortium.

In addition to affecting risk of disease, genetic variation has been shown to affect the response of people to therapeutic drugs, toxic substances and environmental factors, and the HapMap can assist in the identification of those variants. Since not all genetic variants are deleterious, the HapMap also may be used to help to pinpoint genetic variations that contribute to good health, such as those protecting against infectious diseases or promoting longevity.

“We are excited by the opportunity to apply our technology to all publicly available SNPs. This effort is so important that Perlegen is willing to contribute some of its own resources to make this possible,” said Kelly A. Frazer, Ph.D., vice president of genomics at Perlegen. “We are confident that the end result of this public-private collaboration will be an outstanding human haplotype map that will provide a major new tool in the effort to combat human disease through an understanding of its genetic components.”

Researchers around the globe can quickly access the HapMap data through free public databases, such as the HapMap Data Coordination Center (http://www.hapmap.org), the NIH-funded National Center for Biotechnology Information’s dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/) and the JSNP Database in Japan (http://snp.ims.u-tokyo.ac.jp/).

“Adding this large number of new SNPs to the map will make it even easier for researchers to correlate genetic variation with gene function. Such information is crucial for the development of therapies and preventive strategies tailored to each person’s unique genetic makeup,” said Martin Godbout, Ph.D., president and CEO of Genome Canada, who also was speaking on behalf of Genome Quebec.

The International HapMap Consortium is a public-private partnership of scientists and funding agencies from Canada, China, Japan, Nigeria, the United Kingdom and the United States. The U.S. component of the $135 million international project is led by NHGRI on behalf of the 19 institutes, centers and offices of the NIH that contributed funding. For more information on the International HapMap Project, see http://genome.gov/10001688 or http://www.hapmap.org/. To see a complete list of participating research organizations, see http://www.hapmap.org/groups.html.

NHGRI is one of the 27 institutes and centers at the NIH, which is an agency of the Department of Health and Human Services. The NHGRI Division of Extramural Research supports grants for research and for training and career development at sites nationwide. Additional information about NHGRI can be found at www.genome.gov.


Story Source:

The above story is based on materials provided by National Human Genome Research Institute. Note: Materials may be edited for content and length.


Cite This Page:

National Human Genome Research Institute. "Map Of Human Genetic Variation Will Speed Search For Disease Genes." ScienceDaily. ScienceDaily, 10 February 2005. <www.sciencedaily.com/releases/2005/02/050210010152.htm>.
National Human Genome Research Institute. (2005, February 10). Map Of Human Genetic Variation Will Speed Search For Disease Genes. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2005/02/050210010152.htm
National Human Genome Research Institute. "Map Of Human Genetic Variation Will Speed Search For Disease Genes." ScienceDaily. www.sciencedaily.com/releases/2005/02/050210010152.htm (accessed July 24, 2014).

Share This




More Health & Medicine News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
China's Ageing Millions Look Forward to Bleak Future

China's Ageing Millions Look Forward to Bleak Future

AFP (July 24, 2014) China's elderly population is expanding so quickly that children struggle to look after them, pushing them to do something unexpected in Chinese society- move their parents into a nursing home. Duration: 02:07 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins