Featured Research

from universities, journals, and other organizations

New Satellite Observations Of Terrestrial Gamma-ray Flashes Reveal Surprising Features Of Mysterious Blasts From Earth

Date:
February 22, 2005
Source:
University Of California, Santa Cruz
Summary:
A particle accelerator operates in Earth's upper atmosphere above major thunderstorms at energies comparable to some of the most exotic environments in the universe, according to new satellite observations of terrestrial gamma-ray flashes.

Artist's conception of lightning strikes above the clouds triggering gamma-ray bursts. The red spark is a red sprite, blue jets are the short ones, and the TGF is the purple flash.
Credit: NASA

A particle accelerator operates in Earth's upper atmosphere above major thunderstorms at energies comparable to some of the most exotic environments in the universe, according to new satellite observations of terrestrial gamma-ray flashes.

Terrestrial gamma-ray flashes (TGFs) are very short blasts of gamma rays, lasting about one millisecond, that are emitted into space from Earth's upper atmosphere. The gamma rays are thought to be emitted by electrons traveling at near the speed of light when they scatter off of atoms and decelerate in the upper atmosphere. TGFs were first discovered in 1994 by the Burst and Transient Source Experiment (BATSE) on the Compton Gamma-Ray Observatory.

BATSE could only detect TGFs in a special observing mode and was limited in its ability to count them or measure their peak energies. New observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) satellite raise the maximum recorded energy of TGFs by a factor of ten and indicate that the Earth gives off about 50 TGFs every day, and possibly many more. The findings are reported in the February 18 issue of Science by a team of researchers from the University of California, Santa Cruz, UC Berkeley, and the University of British Columbia (UBC).

"The idea that the Earth, a fairly small and tame planet, can be an accelerator of particles to ultrarelativistic energies is fascinating to me," said David Smith, an assistant professor of physics at UC Santa Cruz and first author of the paper.

"The energies we see are as high as those of gamma rays emitted from black holes and neutron stars," Smith said.

The exact mechanism that accelerates the electron beams to produce TGFs is still uncertain, he said, but it probably involves the build-up of electric charge at the tops of thunder clouds due to lightning discharges, resulting in a powerful electric field between the cloudtops and the ionosphere, the outer layer of Earth's atmosphere.

"Regardless of the exact mechanism, there is some enormous particle accelerator in the upper atmosphere that is accelerating electrons to these very high energies, so they emit gamma rays when they hit the sparse atoms of the upper atmosphere," Smith said. "What's exciting is that we are now getting data good enough for the theorists to really test their models."

TGFs have been correlated with lightning strikes and may be related to visible phenomena that occur in the upper atmosphere over thunderstorms, such as red sprites and blue jets. Just how these various phenomena are related is a question the RHESSI investigators plan to pursue in collaboration with other researchers around the world, Smith said.

The Science paper presents the first analysis of RHESSI data for TGFs. RHESSI, a NASA Small Explorer spacecraft, was launched in 2002 to study x-rays and gamma-rays from solar flares. But RHESSI's detectors pick up gamma rays from a variety of sources. Smith worked with RHESSI principal investigator Robert Lin at UC Berkeley and Christopher Barrington-Leigh, now at UBC, to plan ways they could use the satellite for a range of investigations in addition to studying solar flares.

Liliana Lopez, a UC Berkeley undergraduate, has been working with Smith to analyze the RHESSI data for TGFs. The Science paper presents the results from a search of three months of RHESSI data, and the analysis of additional data is ongoing.

The authors estimated a global average rate of about 50 TGFs a day, but the rate could be up to 100 times higher if, as some models indicate, TGFs are emitted as narrowly focused beams that would only be detected when the satellite is directly in their path.

The duration of TGFs recorded by RHESSI ranged from 0.2 to 3.5 milliseconds. The most energetic TGF photons detected by RHESSI were in the range of 10 to 20 million electron volts (10-20 MeV), or about 300 times as energetic as medical x-rays. The electrons that emitted these gamma rays would have been traveling at 99.99 percent of the speed of light, with energies on the order of 35 MeV.

The findings raise many interesting questions, including whether the electrons that emit TGFs ultimately contribute to the high-energy electrons in Earth's radiation belts, Smith said. "This is a very interesting process involving extreme physics right here on Earth, and if we can understand the process here it might give us insights into similar processes in less accessible parts of the universe."


Story Source:

The above story is based on materials provided by University Of California, Santa Cruz. Note: Materials may be edited for content and length.


Cite This Page:

University Of California, Santa Cruz. "New Satellite Observations Of Terrestrial Gamma-ray Flashes Reveal Surprising Features Of Mysterious Blasts From Earth." ScienceDaily. ScienceDaily, 22 February 2005. <www.sciencedaily.com/releases/2005/02/050220214608.htm>.
University Of California, Santa Cruz. (2005, February 22). New Satellite Observations Of Terrestrial Gamma-ray Flashes Reveal Surprising Features Of Mysterious Blasts From Earth. ScienceDaily. Retrieved September 18, 2014 from www.sciencedaily.com/releases/2005/02/050220214608.htm
University Of California, Santa Cruz. "New Satellite Observations Of Terrestrial Gamma-ray Flashes Reveal Surprising Features Of Mysterious Blasts From Earth." ScienceDaily. www.sciencedaily.com/releases/2005/02/050220214608.htm (accessed September 18, 2014).

Share This



More Earth & Climate News

Thursday, September 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Researchers Explore Shipwrecks Off Calif. Coast

Researchers Explore Shipwrecks Off Calif. Coast

AP (Sep. 16, 2014) Federal researchers are exploring more than a dozen underwater sites where they believe ships sank in the treacherous waters west of San Francisco in the decades following the Gold Rush. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Isolated N. Korea Asks For International Help With Volcano

Isolated N. Korea Asks For International Help With Volcano

Newsy (Sep. 16, 2014) Mount Paektu volcano in North Korea is showing signs of life and there's not much known about it. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins