Featured Research

from universities, journals, and other organizations

Ultra-cold Temperature Physics Opens Way To Understanding And Applications

Date:
March 9, 2005
Source:
Penn State
Summary:
Researchers doing ultra-cold temperature physics may not have to wear parkas, but they are producing the coldest temperatures ever and exploring model quantum systems that might lead to more accurate clocks and gyroscopes, quantum computers and communications as well as a better understanding of quantum physics phenomena.

Washington, D.C. –- Researchers doing ultra-cold temperature physics may not have to wear parkas, but they are producing the coldest temperatures ever and exploring model quantum systems that might lead to more accurate clocks and gyroscopes, quantum computers and communications as well as a better understanding of quantum physics phenomena.

Nearly 80 years ago, Albert Einstein and Satyendra Nath Bose predicted that gases of atoms cooled down very close to absolute zero would behave in unison. In 1995, three laboratories produced such Bose-Einstein condensates and opened the door for investigation of physical properties of atoms on a very cold scale.

David S. Weiss, associate professor of physics at Penn State, described recent research in one-dimensional quantum systems at the annual meeting of the American Association for the Advancement of Science Feb. 20 in Washington, D.C.

"These ultra-cold atoms can act as model systems to help us understand other quantum systems," said Weiss. "Their interactions can be calculated and controlled very accurately."

In a Bose-Einstein condensate, alkali metal atoms are cooled using lasers and a form of evaporation until they are a hair above absolute zero. Bosons, a class of particles that prefer to share the same energy state, when cooled this cold, begin to act in unison. The atoms' wave functions -- the description of each atom’s position and momentum –- all become identical. Initially, Bose-Einstein condensates were confined in featureless magnetic traps, but researchers have taken the experiments further.

"By putting Bose-condensed atoms into versatile light traps, we can make atomic wave functions exhibit remarkable behavior," said Weiss. "Most known quantum phenomena can be studied clearly with ultra-cold atoms, and as yet unknown phenomena can be conceived and observed."

The traps Weiss refers to are light traps created by lasers. By reflecting laser light back on itself, researchers create unmoving standing waves that, if created in a three-dimensional grid, can trap atoms. When this type of grid is superimposed over a Bose-Einstein condensate, the atoms segregate into individual traps, creating a matrix of tiny cells with ultra-cold atoms inside. Turning the lattice on and off can switch the system from a superfluid to something called a Mott insulator and back to a superfluid. Superfluids and Mott insulators have different quantum characteristics.

Weiss, who is using rubidium 87, takes the grid one step further and creates a one-dimensional Tonks-Girardeau gas. By constraining the grid in two directions so that movement is possible only in one dimension, as if the atom were on a wire, Weiss creates a system where the bosons -– rubidium 87 atoms -– act like fermions.

Fermions, unlike bosons, do not like to share energy states. Even near zero temperature, they avoid each other. In superconductivity, fermions act like bosons. In a Tonks-Girardeau gas, strongly interacting bosons act as non-interacting fermions.

"A one-dimensional Tonks-Girardeau gas is one of very few many-particle systems that can be exactly solved mathematically," said Weiss. "This was done in the '60s, but there had been no experimental system."

Now, Weiss can experimentally verify the mathematical calculations. Using these techniques, researchers may be able to understand superconductivity better, form quantum molecules and perhaps eventually create quantum computers.

Along with rubidium, some other potential elements for Bose-Einstein condensates and ultra-cold quantum physics are sodium, cesium, lithium and ytterbium.

Weiss considers quantum computing a promising way to use ultra-cold atoms. The atoms can act as quantum bits, or qubits, with internal sub-states functioning as the ubiquitous 0 and 1s of computing.

"However, quantum computers can only do a certain class of calculations, factoring large numbers for example," said Weiss. "They might also be used to simulate other quantum mechanical systems, answering questions that are simply not answerable with any conceivable classic computer."

Superfluid clouds of atoms and grid-constrained, super-cold atoms are not the only possibilities researchers are exploring in ultra-cold quantum physics. Other related areas of research include lattices of atomic vortices, coherent quantum chemistry and atomic interferometry.


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Cite This Page:

Penn State. "Ultra-cold Temperature Physics Opens Way To Understanding And Applications." ScienceDaily. ScienceDaily, 9 March 2005. <www.sciencedaily.com/releases/2005/02/050223130515.htm>.
Penn State. (2005, March 9). Ultra-cold Temperature Physics Opens Way To Understanding And Applications. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/2005/02/050223130515.htm
Penn State. "Ultra-cold Temperature Physics Opens Way To Understanding And Applications." ScienceDaily. www.sciencedaily.com/releases/2005/02/050223130515.htm (accessed July 26, 2014).

Share This




More Matter & Energy News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins