Featured Research

from universities, journals, and other organizations

Ultra-cold Temperature Physics Opens Way To Understanding And Applications

Date:
March 9, 2005
Source:
Penn State
Summary:
Researchers doing ultra-cold temperature physics may not have to wear parkas, but they are producing the coldest temperatures ever and exploring model quantum systems that might lead to more accurate clocks and gyroscopes, quantum computers and communications as well as a better understanding of quantum physics phenomena.

Washington, D.C. –- Researchers doing ultra-cold temperature physics may not have to wear parkas, but they are producing the coldest temperatures ever and exploring model quantum systems that might lead to more accurate clocks and gyroscopes, quantum computers and communications as well as a better understanding of quantum physics phenomena.

Related Articles


Nearly 80 years ago, Albert Einstein and Satyendra Nath Bose predicted that gases of atoms cooled down very close to absolute zero would behave in unison. In 1995, three laboratories produced such Bose-Einstein condensates and opened the door for investigation of physical properties of atoms on a very cold scale.

David S. Weiss, associate professor of physics at Penn State, described recent research in one-dimensional quantum systems at the annual meeting of the American Association for the Advancement of Science Feb. 20 in Washington, D.C.

"These ultra-cold atoms can act as model systems to help us understand other quantum systems," said Weiss. "Their interactions can be calculated and controlled very accurately."

In a Bose-Einstein condensate, alkali metal atoms are cooled using lasers and a form of evaporation until they are a hair above absolute zero. Bosons, a class of particles that prefer to share the same energy state, when cooled this cold, begin to act in unison. The atoms' wave functions -- the description of each atom’s position and momentum –- all become identical. Initially, Bose-Einstein condensates were confined in featureless magnetic traps, but researchers have taken the experiments further.

"By putting Bose-condensed atoms into versatile light traps, we can make atomic wave functions exhibit remarkable behavior," said Weiss. "Most known quantum phenomena can be studied clearly with ultra-cold atoms, and as yet unknown phenomena can be conceived and observed."

The traps Weiss refers to are light traps created by lasers. By reflecting laser light back on itself, researchers create unmoving standing waves that, if created in a three-dimensional grid, can trap atoms. When this type of grid is superimposed over a Bose-Einstein condensate, the atoms segregate into individual traps, creating a matrix of tiny cells with ultra-cold atoms inside. Turning the lattice on and off can switch the system from a superfluid to something called a Mott insulator and back to a superfluid. Superfluids and Mott insulators have different quantum characteristics.

Weiss, who is using rubidium 87, takes the grid one step further and creates a one-dimensional Tonks-Girardeau gas. By constraining the grid in two directions so that movement is possible only in one dimension, as if the atom were on a wire, Weiss creates a system where the bosons -– rubidium 87 atoms -– act like fermions.

Fermions, unlike bosons, do not like to share energy states. Even near zero temperature, they avoid each other. In superconductivity, fermions act like bosons. In a Tonks-Girardeau gas, strongly interacting bosons act as non-interacting fermions.

"A one-dimensional Tonks-Girardeau gas is one of very few many-particle systems that can be exactly solved mathematically," said Weiss. "This was done in the '60s, but there had been no experimental system."

Now, Weiss can experimentally verify the mathematical calculations. Using these techniques, researchers may be able to understand superconductivity better, form quantum molecules and perhaps eventually create quantum computers.

Along with rubidium, some other potential elements for Bose-Einstein condensates and ultra-cold quantum physics are sodium, cesium, lithium and ytterbium.

Weiss considers quantum computing a promising way to use ultra-cold atoms. The atoms can act as quantum bits, or qubits, with internal sub-states functioning as the ubiquitous 0 and 1s of computing.

"However, quantum computers can only do a certain class of calculations, factoring large numbers for example," said Weiss. "They might also be used to simulate other quantum mechanical systems, answering questions that are simply not answerable with any conceivable classic computer."

Superfluid clouds of atoms and grid-constrained, super-cold atoms are not the only possibilities researchers are exploring in ultra-cold quantum physics. Other related areas of research include lattices of atomic vortices, coherent quantum chemistry and atomic interferometry.


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Cite This Page:

Penn State. "Ultra-cold Temperature Physics Opens Way To Understanding And Applications." ScienceDaily. ScienceDaily, 9 March 2005. <www.sciencedaily.com/releases/2005/02/050223130515.htm>.
Penn State. (2005, March 9). Ultra-cold Temperature Physics Opens Way To Understanding And Applications. ScienceDaily. Retrieved March 26, 2015 from www.sciencedaily.com/releases/2005/02/050223130515.htm
Penn State. "Ultra-cold Temperature Physics Opens Way To Understanding And Applications." ScienceDaily. www.sciencedaily.com/releases/2005/02/050223130515.htm (accessed March 26, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, March 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Amazon Complains U.S. Is Too Slow To Regulate Drones

Amazon Complains U.S. Is Too Slow To Regulate Drones

Newsy (Mar. 25, 2015) Days after getting approval to test certain commercial drones, Amazon says the Federal Aviation Administration is dragging its feet on the matter. Video provided by Newsy
Powered by NewsLook.com
Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Reuters - Innovations Video Online (Mar. 25, 2015) European researchers say our smartphone use offers scientists an ideal testing ground for human brain plasticity. Dr Ako Ghosh&apos;s team discovered that the brains and thumbs of smartphone users interact differently from those who use old-fashioned handsets. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
China Wants to Export Its Steel Problem

China Wants to Export Its Steel Problem

Reuters - Business Video Online (Mar. 25, 2015) China is facing a crisis with a glut of steel and growing public anger over the pollution created by production. In a move to solve the problem, some steel mills are looking to relocate overseas. Jane Lanhee Lee reports. Video provided by Reuters
Powered by NewsLook.com
Robot Stays on Its Feet Despite Punishment

Robot Stays on Its Feet Despite Punishment

Reuters - Innovations Video Online (Mar. 24, 2015) Robotic engineers have modelled a two-legged robot to be fast and agile like an ostrich. The design is more efficient and stable than bipedal robots built to move like humans, according to its creators who abuse the poor machine to test its skills. Ben Gruber has more. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins