Featured Research

from universities, journals, and other organizations

Genome-wide Mouse Study Yields Link To Human Leukemia

Date:
February 24, 2005
Source:
Ohio State University
Summary:
Thanks to a handful of very special mice, scientists have discovered a new tumor suppressor gene and a unique chemical signature implicated in the development of human leukemia, findings that open up a “treasure box” of opportunity and possibility, study authors say.

COLUMBUS , Ohio – Thanks to a handful of very special mice, scientists have discovered a new tumor suppressor gene and a unique chemical signature implicated in the development of human leukemia, findings that open up a “treasure box” of opportunity and possibility, study authors say.

Related Articles


Researchers in The Ohio State University Comprehensive Cancer Center bred a type of mouse that develops acute lymphoblastic leukemia (ALL). The mouse first goes through a pre-leukemic stage marked by rapidly expanding T cells and natural killer cells, both major components of the immune system.

In comparing the mice in the pre-leukemic stage and those with ALL with normal mice, researchers found that methylation, a chemical process that adds methyl molecules to DNA, silenced a number of genes – but only in the mice with full-blown ALL.

Further tests revealed that the methylation pattern in the mice with leukemia is strikingly similar to the pattern of methylation in human leukemia.

In the process, the researchers also identified a new gene that when methylated, appears to interrupt normal cell death, a process called apoptosis.

“It's given us a whole new way to look at and possibly treat leukemia,” says Michael Caligiuri, director of the OSU Comprehensive Cancer Center (OSUCCC) and senior co-author of the study. “It's also validated our mouse model as a good predictor of what happens in the development of human disease,” he added.The findings appear in Nature Genetics online at http://www.nature.com/ng/.

“This is the first time anyone has examined methylation in leukemia on a genome-wide basis in a mouse, and the findings offer important implications for patient care, since we know that methylation, which alters gene function, can be reversed,” says Christoph Plass, senior co-author and a member of the OSUCCC's Molecular Biology and Cancer Genetics and Experimental Therapeutics Programs.

While it was Caligiuri's laboratory that designed the mouse model, it was Plass who supervised the methylation studies. He and his colleagues used a system called Restriction Landmark Genome Sequencing (RLGS) to compare methylation patterns among the three groups of mice – a method of using enzymes and gel electrophoresis to map tiny bits of DNA on a grid. The stretches of DNA, referred to as fragments, show up as smudgy blobs on a test film. If a fragment is dark and definite, it is not methylated. If, on the other hand, it loses at least 30 percent of its intensity, it is regarded as methylated.

In the study, the research team tested 2447 fragments in each animal. They found anywhere from 45 to 209 (.8 percent to 8.5 percent) of the fragments methylated in the mice with cancer, but only one or two methylated fragments in the other mice.

“Interestingly, that same range of methylated fragments is exactly what we find in human leukemia, too,” says Caligiuri, “so that gives added merit to our mouse model as an investigative tool.”

Using data from the methylation studies, Caligiuri and Plass were able to identify a particular stretch of DNA, called Id4, as a tumor suppressor gene.

Tumor suppressor genes help control cancer by identifying and getting rid of defective cells before they have a chance to mature and divide. When tumor suppressor genes lose that ability – as they can if they are silenced through methylation or some other process, it gives cancer a chance to establish a foothold and spread.

Caligiuri says much more work needs to be done, but adds that the identification of Id4 as a likely tumor suppressor gene gives clinicians another possible target for intervention.

“We already have a drug, decitabine, that we know can reverse the effects of methylation,” says Plass. “We are just beginning to figure out how it best works in humans, but simply knowing that we have a new target that may be meaningful in treating leukemia is a big step in the right direction.”

Grants from the National Cancer Institute and the Leukemia and Lymphoma Society supported the research.

Additional co-authors from Ohio State include Li Yu, Chunhui Liu, Jeff Vandeusen, Brian Becknell, Zunyun Dai, Yue-Zhong Wu, Aparna Raval, Te-Hui Liu, Wei Ding, Charlene Mao, Shujun Liu, Laura Smith, Stephen Lee, Guido Marcucci and John Byrd. Laura Rassenti, from the University of California , San Diego , also contributed to the project.

The Ohio State University Comprehensive Cancer Center is a network of interdisciplinary research programs with over 200 investigators in 13 colleges across the OSU campus, the Arthur G. James Cancer Hospital and Richard J. Solove Research Institute and Children's Hospital, in Columbus . OSUCCC members conduct research on the prevention, detection, diagnosis and treatment of cancer, generating over $95 million annually in external funding.


Story Source:

The above story is based on materials provided by Ohio State University. Note: Materials may be edited for content and length.


Cite This Page:

Ohio State University. "Genome-wide Mouse Study Yields Link To Human Leukemia." ScienceDaily. ScienceDaily, 24 February 2005. <www.sciencedaily.com/releases/2005/02/050223162606.htm>.
Ohio State University. (2005, February 24). Genome-wide Mouse Study Yields Link To Human Leukemia. ScienceDaily. Retrieved November 25, 2014 from www.sciencedaily.com/releases/2005/02/050223162606.htm
Ohio State University. "Genome-wide Mouse Study Yields Link To Human Leukemia." ScienceDaily. www.sciencedaily.com/releases/2005/02/050223162606.htm (accessed November 25, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Tuesday, November 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Newsy (Nov. 25, 2014) Need another reason to eat yogurt every day? Researchers now say it could reduce a person's risk of developing type 2 diabetes. Video provided by Newsy
Powered by NewsLook.com
Madagascar Working to Contain Plague Outbreak

Madagascar Working to Contain Plague Outbreak

AFP (Nov. 24, 2014) Madagascar said Monday it is trying to contain an outbreak of plague -- similar to the Black Death that swept Medieval Europe -- that has killed 40 people and is spreading to the capital Antananarivo. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins