Featured Research

from universities, journals, and other organizations

Genome-wide Mouse Study Yields Link To Human Leukemia

Date:
February 24, 2005
Source:
Ohio State University
Summary:
Thanks to a handful of very special mice, scientists have discovered a new tumor suppressor gene and a unique chemical signature implicated in the development of human leukemia, findings that open up a “treasure box” of opportunity and possibility, study authors say.

COLUMBUS , Ohio – Thanks to a handful of very special mice, scientists have discovered a new tumor suppressor gene and a unique chemical signature implicated in the development of human leukemia, findings that open up a “treasure box” of opportunity and possibility, study authors say.

Researchers in The Ohio State University Comprehensive Cancer Center bred a type of mouse that develops acute lymphoblastic leukemia (ALL). The mouse first goes through a pre-leukemic stage marked by rapidly expanding T cells and natural killer cells, both major components of the immune system.

In comparing the mice in the pre-leukemic stage and those with ALL with normal mice, researchers found that methylation, a chemical process that adds methyl molecules to DNA, silenced a number of genes – but only in the mice with full-blown ALL.

Further tests revealed that the methylation pattern in the mice with leukemia is strikingly similar to the pattern of methylation in human leukemia.

In the process, the researchers also identified a new gene that when methylated, appears to interrupt normal cell death, a process called apoptosis.

“It's given us a whole new way to look at and possibly treat leukemia,” says Michael Caligiuri, director of the OSU Comprehensive Cancer Center (OSUCCC) and senior co-author of the study. “It's also validated our mouse model as a good predictor of what happens in the development of human disease,” he added.The findings appear in Nature Genetics online at http://www.nature.com/ng/.

“This is the first time anyone has examined methylation in leukemia on a genome-wide basis in a mouse, and the findings offer important implications for patient care, since we know that methylation, which alters gene function, can be reversed,” says Christoph Plass, senior co-author and a member of the OSUCCC's Molecular Biology and Cancer Genetics and Experimental Therapeutics Programs.

While it was Caligiuri's laboratory that designed the mouse model, it was Plass who supervised the methylation studies. He and his colleagues used a system called Restriction Landmark Genome Sequencing (RLGS) to compare methylation patterns among the three groups of mice – a method of using enzymes and gel electrophoresis to map tiny bits of DNA on a grid. The stretches of DNA, referred to as fragments, show up as smudgy blobs on a test film. If a fragment is dark and definite, it is not methylated. If, on the other hand, it loses at least 30 percent of its intensity, it is regarded as methylated.

In the study, the research team tested 2447 fragments in each animal. They found anywhere from 45 to 209 (.8 percent to 8.5 percent) of the fragments methylated in the mice with cancer, but only one or two methylated fragments in the other mice.

“Interestingly, that same range of methylated fragments is exactly what we find in human leukemia, too,” says Caligiuri, “so that gives added merit to our mouse model as an investigative tool.”

Using data from the methylation studies, Caligiuri and Plass were able to identify a particular stretch of DNA, called Id4, as a tumor suppressor gene.

Tumor suppressor genes help control cancer by identifying and getting rid of defective cells before they have a chance to mature and divide. When tumor suppressor genes lose that ability – as they can if they are silenced through methylation or some other process, it gives cancer a chance to establish a foothold and spread.

Caligiuri says much more work needs to be done, but adds that the identification of Id4 as a likely tumor suppressor gene gives clinicians another possible target for intervention.

“We already have a drug, decitabine, that we know can reverse the effects of methylation,” says Plass. “We are just beginning to figure out how it best works in humans, but simply knowing that we have a new target that may be meaningful in treating leukemia is a big step in the right direction.”

Grants from the National Cancer Institute and the Leukemia and Lymphoma Society supported the research.

Additional co-authors from Ohio State include Li Yu, Chunhui Liu, Jeff Vandeusen, Brian Becknell, Zunyun Dai, Yue-Zhong Wu, Aparna Raval, Te-Hui Liu, Wei Ding, Charlene Mao, Shujun Liu, Laura Smith, Stephen Lee, Guido Marcucci and John Byrd. Laura Rassenti, from the University of California , San Diego , also contributed to the project.

The Ohio State University Comprehensive Cancer Center is a network of interdisciplinary research programs with over 200 investigators in 13 colleges across the OSU campus, the Arthur G. James Cancer Hospital and Richard J. Solove Research Institute and Children's Hospital, in Columbus . OSUCCC members conduct research on the prevention, detection, diagnosis and treatment of cancer, generating over $95 million annually in external funding.


Story Source:

The above story is based on materials provided by Ohio State University. Note: Materials may be edited for content and length.


Cite This Page:

Ohio State University. "Genome-wide Mouse Study Yields Link To Human Leukemia." ScienceDaily. ScienceDaily, 24 February 2005. <www.sciencedaily.com/releases/2005/02/050223162606.htm>.
Ohio State University. (2005, February 24). Genome-wide Mouse Study Yields Link To Human Leukemia. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2005/02/050223162606.htm
Ohio State University. "Genome-wide Mouse Study Yields Link To Human Leukemia." ScienceDaily. www.sciencedaily.com/releases/2005/02/050223162606.htm (accessed September 23, 2014).

Share This



More Health & Medicine News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Liberia Pleads for Help to Fight Ebola

Liberia Pleads for Help to Fight Ebola

AP (Sep. 22, 2014) Liberia's finance minister is urging the international community to quickly follow through on pledges of cash to battle Ebola. Bodies are piling up in the capital Monrovia as the nation awaits more help. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Ebola Doctor Says Border Controls Critical

Ebola Doctor Says Border Controls Critical

AP (Sep. 22, 2014) A Florida doctor who helped fight the expanding Ebola outbreak in West Africa says the disease can be stopped, but only if nations quickly step up their response and make border control a priority. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Global Ebola Aid Increasing But Critics Say It's Late

Global Ebola Aid Increasing But Critics Say It's Late

Newsy (Sep. 21, 2014) More than 100 tons of medical supplies were sent to West Africa on Saturday, but aid workers say the global response is still sluggish. Video provided by Newsy
Powered by NewsLook.com
Sierra Leone in Lockdown to Control Ebola

Sierra Leone in Lockdown to Control Ebola

AP (Sep. 21, 2014) Sierra Leone residents remained in lockdown on Saturday as part of a massive effort to confine millions of people to their homes in a bid to stem the biggest Ebola outbreak in history. (Sept. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins