Featured Research

from universities, journals, and other organizations

The Neutrino Underground: Experiment Will Fire Trillions Of The Ghostly Particles Through The Earth

Date:
March 8, 2005
Source:
National Science Foundation
Summary:
An international consortium of 200-plus scientists, engineers, technical specialists and students has formally inaugurated an ambitious new effort to probe the secrets of neutrinos, the elusive subatomic particles that have played a central role in the origin of the universe, the evolution of the Sun, and much else.

The groundbreaking for the cavern of the MINOS far detector, deep within Minnesota's Soudan iron mine, was on July 20, 1999. The excavation of the cavern took about two years, followed by the two-year construction of the detector. The University of Minnesota Foundation commissioned a mural for the MINOS cavern, painted onto the rock wall, 59 feet wide by 25 feet high. The mural contains images of scientists such as Enrico Fermi and Wolfgang Pauli, Wilson Hall at Fermilab, George Shultz, a key figure in the history of Minnesota mining, and some surprises.
Credit: Fermilab

An international consortium of 200-plus scientists, engineers, technical specialists and students has formally inaugurated an ambitious new effort to probe the secrets of neutrinos, the elusive subatomic particles that have played a central role in the origin of the universe, the evolution of the Sun, and much else.

Where do neutrinos come from? What are their masses? And how do they change from one kind to another? The researchers will attempt to answer such questions with the newly completed NuMI-MINOS experiment, which will send pulses of neutrinos on a 450-mile path through the Earth.

NuMI stands for Neutrinos at the Main Injector, the facility that produces the neutrino beam at the Fermi National Accelerator Laboratory in Batavia, Illinois, outside Chicago. MINOS refers to a pair of huge underground particle detectors that together comprise the Main Injector Neutrino Oscillation Search. One, the 1000-ton MINOS near detector at Fermilab, will monitor the neutrino beam as it heads outward. The other, the 6,000-ton MINOS far detector located a half-mile underground in the Soudan iron mine of northeastern Minnesota, will serve as the final target.

The detectors' job won’t be easy. Because neutrinos interact so rarely, trillions of them will pass through the MINOS near detector each year, but only about 1,500 per year will collide with atoms inside the detector and produce a signal. The rest will pass right through with no effect. It will be much the same story in Minnesota as in Illinois. Nonetheless, the detector there should be able to tell if some fraction of the neutrinos have changed from one kind to another during the 2.5-millisecond trip. MINOS scientists will then use the change from one type of neutrino to another as the key to discovering neutrinos’ secrets.

The Department of Energy provides the major share of funding for NuMI-MINOS project, with additional support coming from the National Science Foundation (NSF) and from the United Kingdom’s Particle Physics and Astronomy Research Council.

Michael Turner, NSF’s Assistant Director for Mathematics and the Physical Sciences, believes the neutrinos’ infinitesimal mass belies their significant and ubiquitous impact.

"Neutrinos are always referred to as ghostly particles, as if they are of little interest and have to be apologized for,” Turner says. “Nothing could be further from the truth. Neutrinos account for as much of the mass of the universe as do stars, they play a crucial role in the production of the chemical elements in the explosions of stars, and they may well explain the origin of the neutrons, protons and electrons that are the building blocks of all the atoms in the universe. MINOS will help us better understand how neutrinos shaped the universe we live in.”


Story Source:

The above story is based on materials provided by National Science Foundation. Note: Materials may be edited for content and length.


Cite This Page:

National Science Foundation. "The Neutrino Underground: Experiment Will Fire Trillions Of The Ghostly Particles Through The Earth." ScienceDaily. ScienceDaily, 8 March 2005. <www.sciencedaily.com/releases/2005/03/050307215203.htm>.
National Science Foundation. (2005, March 8). The Neutrino Underground: Experiment Will Fire Trillions Of The Ghostly Particles Through The Earth. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2005/03/050307215203.htm
National Science Foundation. "The Neutrino Underground: Experiment Will Fire Trillions Of The Ghostly Particles Through The Earth." ScienceDaily. www.sciencedaily.com/releases/2005/03/050307215203.htm (accessed October 20, 2014).

Share This



More Matter & Energy News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Robotic Eyes' Helps Japan's Bipedal Bot Run Faster

'Robotic Eyes' Helps Japan's Bipedal Bot Run Faster

Reuters - Innovations Video Online (Oct. 16, 2014) Japanese researcher uses an eye-sensor camera to enable a bipedal robot to balance itself, while running on a treadmill. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Lockheed Martin's Fusion Concept Basically An Advertisement

Lockheed Martin's Fusion Concept Basically An Advertisement

Newsy (Oct. 15, 2014) Lockheed Martin announced plans to develop the first-ever compact nuclear fusion reactor. But some experts said the excitement is a little premature. Video provided by Newsy
Powered by NewsLook.com
First Confirmed Case Of Google Glass Addiction

First Confirmed Case Of Google Glass Addiction

Buzz60 (Oct. 15, 2014) A Google Glass user was treated for Internet Addiction Disorder caused from overuse of the device. Morgan Manousos (@MorganManousos) has the details on how many hours he spent wearing the glasses, and what his symptoms were. Video provided by Buzz60
Powered by NewsLook.com
Science Proves Why Pizza Is So Delicious

Science Proves Why Pizza Is So Delicious

Buzz60 (Oct. 15, 2014) The American Chemical Society’s latest video about chemistry in every day life breaks down pizza, and explains exactly why it's so delicious. Gillian Pensavalle (@GillianWithaG) has the video. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins