Featured Research

from universities, journals, and other organizations

Astronomers Measure Slowest Motion Across The Sky

Date:
March 11, 2005
Source:
Harvard-Smithsonian Center For Astrophysics
Summary:
Astronomers report that they have measured the slowest ever motion of a galaxy across the plane of the sky. This distant whirlpool of stars appears to creep along despite its actual speed through space because it is located so far from the Earth. Measuring this galaxy's glacial pace of only 30 micro-arcseconds per year stretched current radio astronomy technology to its limit.

By studying two regions of maser activity in the spiral galaxy M33, astronomers have measured the slowest ever motion across the plane of the sky. Although its speed through space is large, M33 is so distant that it appears to move at the glacial pace of only 30 micro-arcseconds per year, 100 times slower than a snail on Mars as seen from Earth. Arrows indicate the predicted motions of the masers due to the galaxy's rotation. Credit: T.A. Rector and M. Hanna (NOAO/AURA/NSF)

Cambridge, MA -- In the March 4th issue of Science, astronomers report that they have measured the slowest ever motion of a galaxy across the plane of the sky. This distant whirlpool of stars appears to creep along despite its actual speed through space because it is located so far from the Earth. Measuring this galaxy's glacial pace of only 30 micro-arcseconds per year stretched current radio astronomy technology to its limit.

"A snail crawling on Mars would appear to be moving across the surface more than 100 times faster than the motion we measured for this galaxy," said Mark Reid (Harvard-Smithsonian Center for Astrophysics), a co-author on the paper.

Reid and his colleagues used the National Science Foundation's Very Long Baseline Array (VLBA) to measure the motion across the sky of a galaxy located nearly 2.4 million light-years from Earth. While scientists have been measuring the motion of galaxies directly toward or away from Earth for decades, this is the first time that the transverse motion (called proper motion by astronomers) has been measured for a galaxy that is not a nearby satellite of the Milky Way.

An international scientific team analyzed VLBA observations made over two and a half years to detect minuscule shifts in the sky position of the spiral galaxy M33. Combined with previous measurements of the galaxy's motion toward Earth, the new data allowed the astronomers to calculate M33's movement in three dimensions for the first time.

M33 is a satellite of the larger galaxy M31, the well-known Andromeda Galaxy that is the most distant object visible to the naked eye. Both are part of the Local Group of galaxies that includes the Milky Way.

The astronomers' task was not simple. Not only did they have to detect an impressively tiny amount of motion across the sky, but they also had to separate the actual motion of M33 from the apparent motion caused by our Solar System's motion around the center of the Milky Way. The motion of the Solar System and the Earth around the galactic center, some 26,000 light-years away, has been accurately measured using the VLBA over the last decade.

"The VLBA is the only telescope system in the world that could do this work," Reid said. "Its extraordinary ability to resolve fine detail is unmatched and was the absolute prerequisite to making these measurements."

In addition to measuring the motion of M33 as a whole, the astronomers also were able to make a direct measurement of the spiral galaxy's rotation. Both measurements were made by observing the changes in position of giant clouds of molecules inside the galaxy. The water vapor in these clouds acts as a natural maser, strengthening, or amplifying, radio emission the same way that lasers amplify light emission. The natural masers acted as bright radio beacons whose movement could be tracked by the ultra-sharp radio "vision" of the VLBA.

Reid and his colleagues plan to continue measuring M33's motion and also to make similar measurements of M31's motion. This will allow them to answer important questions about the composition, history and fates of the two galaxies as well as of the Milky Way.

"We want to determine the orbits of M31 and M33. That will help us learn about their history, specifically, how close have they come in the past?" Reid explained. "If they have passed very closely, then maybe M33's small size is a result of having material pulled off it by M31 during the close encounter," he added.

Accurate knowledge of the motions of both galaxies also will help determine if there is a collision in their future. In addition, orbital analysis can give astronomers valuable clues about the amount and distribution of dark matter in the galaxies.

Reid worked with Andreas Brunthaler of the Max Planck Institute for Radioastronomy in Bonn, Germany; Heino Falcke of ASTRON in the Netherlands; Lincoln Greenhill, also of the Harvard-Smithsonian Center for Astrophysics; and Christian Henkel, also of the Max Planck Institute in Bonn.

Note: This release is being issued jointly with the National Radio Astronomy Observatory (NRAO).

Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.


Story Source:

The above story is based on materials provided by Harvard-Smithsonian Center For Astrophysics. Note: Materials may be edited for content and length.


Cite This Page:

Harvard-Smithsonian Center For Astrophysics. "Astronomers Measure Slowest Motion Across The Sky." ScienceDaily. ScienceDaily, 11 March 2005. <www.sciencedaily.com/releases/2005/03/050309125824.htm>.
Harvard-Smithsonian Center For Astrophysics. (2005, March 11). Astronomers Measure Slowest Motion Across The Sky. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2005/03/050309125824.htm
Harvard-Smithsonian Center For Astrophysics. "Astronomers Measure Slowest Motion Across The Sky." ScienceDaily. www.sciencedaily.com/releases/2005/03/050309125824.htm (accessed August 22, 2014).

Share This




More Space & Time News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Newsy (Aug. 21, 2014) Russian cosmonauts say they've found evidence of sea plankton on the International Space Station's windows. NASA is a little more skeptical. Video provided by Newsy
Powered by NewsLook.com
Space to Ground: Hello Georges

Space to Ground: Hello Georges

NASA (Aug. 18, 2014) Europe's ATV-5 delivers new science and the crew tests smart SPHERES. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com
Tiny Satellites, Like The One Tossed From ISS, On The Rise

Tiny Satellites, Like The One Tossed From ISS, On The Rise

Newsy (Aug. 18, 2014) The Chasqui I, hand-delivered into orbit by a Russian cosmonaut, is one of hundreds of small satellites set to go up in the next few years. Video provided by Newsy
Powered by NewsLook.com
This Week @ NASA, August 15, 2014

This Week @ NASA, August 15, 2014

NASA (Aug. 15, 2014) Carbon Observatory’s First Data, ATV-5 Delivers Cargo, Cygnus Departs Station and more... Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins