Featured Research

from universities, journals, and other organizations

NYU And MSKCC Research Provides Model For Understanding Chemically Induced Cancer Initiation

Date:
March 27, 2005
Source:
New York University
Summary:
A team from the chemistry and biology departments of New York University, in collaboration with Memorial Sloan Kettering Cancer Center (MSKCC), has uncovered a conformational switch—a change in shape in a carcinogen-damaged DNA site—in tumor suppressor genes altered by a known cancer-causing chemical found in cigarette smoke.

A team from the chemistry and biology departments of New York University, in collaboration with Memorial Sloan Kettering Cancer Center (MSKCC), has uncovered a conformational switch—a change in shape in a carcinogen-damaged DNA site—in tumor suppressor genes altered by a known cancer-causing chemical found in cigarette smoke. This finding may open new horizons for understanding the initiation of chemically induced cancers.

Related Articles


The findings appear as the cover story in the latest issue of the Journal of Molecular Biology. This team was headed by Dinshaw Patel at MSKCC, Nicholas Geacintov, chair of NYU’s chemistry department, and Suse Broyde, a professor in NYU’s biology department.

The studied gene, p53, is an important tumor suppressor gene that plays critical roles in cellular functions such as cell-cycle control, differentiation, and DNA repair. Many different chemical carcinogens, including those that are primary components of cigarette smoke, are known to damage DNA. This damage occurs at special positions of the p53 gene, called mutation hot spots, which have been previously linked with cigarette smoke. This molecular link between chemical DNA damage and cigarette-associated lung cancer has been called the “smoking gun.” In the study, the conformational switch discovered by the research team entails a change in the conformation of a carcinogen-damaged site in a DNA model sequence similar to that in a p53 mutation hot spot. The change is brought about by the presence of a single methyl group (composed only of one carbon and three hydrogen atoms) on a cytosine base adjacent to the damaged site. Without this methyl group, the bulky chemical carcinogen resides at an external binding site in the minor groove of the DNA double helix. However, in the presence of this single methyl group, it assumes an intercalated structure in which the carcinogenic residue is sandwiched between adjacent base pairs in the double helix.

“Such conformational differences in methylated and unmethylated DNA sequences may be significant because of potential alterations in the cellular processing of these lesions by DNA transcription, replication, and repair enzymes,” said NYU’s Geacintov.

“Because environmental chemical carcinogens, including those present in cigarette smoke, are a significant threat to human health, it is imperative to understand how chemicals can induce mutations and cancer at the molecular level,” added NYU’s Broyde. “Such information is needed for devising novel preventive and therapeutic strategies for addressing the problem of cancer induction by environmental chemical carcinogens.” The researchers added that the finding opens new horizons, at the molecular level, for understanding the effects of methylation at p53 mutation hot spots on the properties of carcinogen-DNA lesions. Current thinking in the field of chemical carcinogenesis is that the mutation-prone, or error-free processing of such carcinogen-damaged p53 genes by DNA repair proteins and DNA and RNA polymerases can determine whether these lesions ultimately contribute to the development of lung and other cancers.

The research was supported by research grants from the National Cancer Institute of the National Institutes of Health.


Story Source:

The above story is based on materials provided by New York University. Note: Materials may be edited for content and length.


Cite This Page:

New York University. "NYU And MSKCC Research Provides Model For Understanding Chemically Induced Cancer Initiation." ScienceDaily. ScienceDaily, 27 March 2005. <www.sciencedaily.com/releases/2005/03/050325151548.htm>.
New York University. (2005, March 27). NYU And MSKCC Research Provides Model For Understanding Chemically Induced Cancer Initiation. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2005/03/050325151548.htm
New York University. "NYU And MSKCC Research Provides Model For Understanding Chemically Induced Cancer Initiation." ScienceDaily. www.sciencedaily.com/releases/2005/03/050325151548.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins