Featured Research

from universities, journals, and other organizations

Quasiparticle Behavior In Bose Quantum Liquids

Date:
April 7, 2005
Source:
Brookhaven National Laboratory
Summary:
Quasiparticles carry energy in condensed matter. In the world of quasiparticle physics, understanding when and how these energy carriers fail opens doors to another level of understanding, and can lead the way to many new and important theories. Scientists at the U. S. Department of Energy’s Brookhaven National Laboratory have discovered the failure point for the quasiparticle construct, the standard model of condensed matter physics.

Physicist Igor Zaliznyak.
Credit: Photo courtesy of Brookhaven National Laboratory

LOS ANGELES, CA - Quasiparticles carry energy in condensed matter. In the world of quasiparticle physics, understanding when and how these energy carriers fail opens doors to another level of understanding, and can lead the way to many new and important theories. Scientists at the U. S. Department of Energy’s Brookhaven National Laboratory have discovered the failure point for the quasiparticle construct, the standard model of condensed matter physics. This could have far-reaching implications, for example, in the study of high-temperature superconductors, materials currently under intense scrutiny as a possible replacement for the conventional superconducting materials now used in many facets of everyday life.

Related Articles


At the March 2005 meeting of the American Physical Society, Brookhaven physicist Igor Zaliznyak will explain how he and his colleagues identified the “spectrum endpoint” in a Bose quantum spin liquid, the point at which the quasiparticles are no longer well-defined energy carriers. Zaliznyak will discuss his paper at 1:39 p.m. Friday, March 25, 2005, in Room 515B of the Los Angeles Convention Center.

“Although the quantum-liquid state has been studied for roughly a century, it continues to fascinate physicists,” Zaliznyak said. “We have demonstrated that at higher energies, the Bose quasiparticle description fails because of quasiparticle decay.”

The study of quasiparticles, which govern the properties of quantum liquids, was pioneered by Russian Nobel Prize winning-physicist L.D. Landau. There are two types of quasiparticles, Bose and Fermi, and physicists around the globe are exploring the properties of each type. The Brookhaven experiments, conducted using the triple-axis neutron spectrometer at the National Institutes of Standards and Technology, confirmed that in a particular Bose quantum spin liquid, quasiparticle decay leads to spectrum termination, as was predicted by Landau.

“Landau proposed that at some energy, the quasiparticle description breaks down, and in a generic form this has been known,” Zaliznyak said. “But the extent of the phenomenon and how it reveals itself in real materials hasn’t been clear. We have shown that at twice the minimum excitation energy, known as the spin gap, Bose quasiparticles cease to be defined at all and disappear.”

The Brookhaven experiments studied a quantum liquid found in systems composed of quantum spins in magnetic crystals, specifically an organo-metallic material known as PHCC. The scientists’ neutron scattering measurements demonstrate the occurrence of spectrum termination in the two-dimensional quantum spin liquid found in PHCC.

“When you attempt to create an excitation that is more than twice the gap rate, it’s possible that your excitation decays, “ Zaliznyak said. “In Bose quantum liquids, when decay processes like this become allowed, you can’t have quasiparticles.”

The research was funded by the Office of Basic Energy Sciences within the U.S. Department of Energy's Office of Science, the National Science Foundation, and the Robert A. Welch Foundation.


Story Source:

The above story is based on materials provided by Brookhaven National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Brookhaven National Laboratory. "Quasiparticle Behavior In Bose Quantum Liquids." ScienceDaily. ScienceDaily, 7 April 2005. <www.sciencedaily.com/releases/2005/03/050326012711.htm>.
Brookhaven National Laboratory. (2005, April 7). Quasiparticle Behavior In Bose Quantum Liquids. ScienceDaily. Retrieved January 26, 2015 from www.sciencedaily.com/releases/2005/03/050326012711.htm
Brookhaven National Laboratory. "Quasiparticle Behavior In Bose Quantum Liquids." ScienceDaily. www.sciencedaily.com/releases/2005/03/050326012711.htm (accessed January 26, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, January 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Obama Reveals Nuclear Breakthrough on Landmark India Trip

Obama Reveals Nuclear Breakthrough on Landmark India Trip

Reuters - News Video Online (Jan. 25, 2015) In a glow of bonhomie, U.S. President Barack Obama and Indian Prime Minister Narendra Modi unveil a deal aimed at unlocking billions of dollars in nuclear trade. Pavithra George reports. Video provided by Reuters
Powered by NewsLook.com
NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

Newsy (Jan. 23, 2015) In light of high-profile plane disappearances in the past year, the NTSB has called for changes to make finding missing aircraft easier. Video provided by Newsy
Powered by NewsLook.com
Iconic Metal Toy Meccano Goes Robotic

Iconic Metal Toy Meccano Goes Robotic

Reuters - Innovations Video Online (Jan. 22, 2015) Classic children&apos;s toy Meccano has gone digital, releasing a programmable kit robot that can be controlled by voice recognition. The toymakers say Meccanoid G15 KS is easy to use and is compatible with existing Meccano pieces. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
The VueXL From VX1 Immersive Smartphone Headset!

The VueXL From VX1 Immersive Smartphone Headset!

Rumble (Jan. 22, 2015) The VueXL from VX1 is a product that you install your smartphone in and with the magic of magnification lenses, enlarges your smartphones screen so that it&apos;s like looking at a big screen TV. Check it out! Video provided by Rumble
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins