Featured Research

from universities, journals, and other organizations

Iron Exporter Revealed That May Explain Common Human Disorder

Date:
March 31, 2005
Source:
Cell Press
Summary:
The first direct evidence that a single protein is critical in the cellular export of iron may help to explain human hemochromatosis, researchers report in the March issue of Cell Metabolism.

The first direct evidence that a single protein is critical in the cellular export of iron may help to explain human hemochromatosis, researchers report in the March issue of Cell Metabolism.

Related Articles


Hemochromatosis--which affects one in every 200 to 300 people in Western populations --causes tissues of the body to become overloaded with iron. Left untreated, the hereditary disease can lead to organ failure.

The new work, led by researchers at the Children's Hospital Boston and Harvard Medical School, finds that the protein ferroportin is the major, if not the only, iron exporter that functions in key sites of iron absorption and release in the body. The findings suggest that the iron accumulation seen in those with hemochromatosis may stem from a loss of control over iron export through ferroportin, the researchers said.

"Iron is essential in the body and abundant in the environment, but it's also very reactive and damaging when in excess," said Nancy Andrews, senior author of the study. "Mammals have therefore evolved mechanisms to get enough iron from the diet, but not too much."

Iron is an essential ingredient of hemoglobin, the protein molecule in red blood cells that carries oxygen from the lungs to the body's tissues. Unlike other metals, iron cannot be eliminated through the liver or kidneys, Andrews explained. Iron balance is maintained instead through the complex regulation of tissues that transport, store, and utilize iron.

Mammals, including humans, initially obtain iron from their mothers. After birth, the intestine absorbs dietary iron and releases it into the bloodstream where developing red blood cells incorporate the iron into hemoglobin. When red blood cells die, macrophage cells consume them and recycle the iron they contain. Macrophages and liver cells also store any excess iron.

Earlier work had identified a single protein that imports iron into cells. However, the evidence for ferroportin's role in exporting iron back out of cells remained indirect. To determine which cells depend on ferroportin, the researchers inactivated the protein in mice, both globally and in select tissues.

Animals completely lacking ferroportin died early in development due to a failure of iron transfer from mother to embryo. Mice deficient for ferroportin in all tissues except those critical for maternal nutrient transfer survived but quickly became anemic after birth due to iron deficiency in the blood. Examination of the animals' intestine, liver, and spleen revealed an accumulation of iron within cells, indicating an inability of cells to release iron once absorbed.

Mice lacking ferroportin only in intestinal cells also developed severe iron deficiency anemia, further confirming the protein's role in iron absorption.

The findings offer insight into the underlying basis for hemochromatosis, Andrews said. The researchers propose that, in patients with the disease, perturbations in iron homeostasis result from a failure to control iron export through ferroportin, leading to increased iron release from macrophages and enhanced intestinal absorption. Indeed, patients with the disease exhibit a deficiency of hepcidin, a hormone that binds ferroportin and targets it for destruction.

Drugs that inhibit or degrade ferroportin might therefore curb the iron overload suffered by those with hemochromatosis, Andrews said. Those with excess iron for other reasons, such as repeated blood transfusions, might also benefit from such a drug, she added.

The other members of the research team include Adriana Donovan from Children's Hospital Boston and Harvard Medical School; Christine A. Lima from Children's Hospital Boston and Howard Hughes Medical Institute; Jack L. Pinkus and Geraldine S. Pinkus from Brigham and Women's Hospital; Leonard I. Zon and Nancy C. Andrews from Children's Hospital Boston, Harvard Medical School, and Howard Hughes Medical Institute; and Sylvie Robine from Equipe de Morphogenθse et Signalisation Cellulaires, Institut Curie. This work was supported by P01 HL32262 (N.C.A.) and K01 5 K01 DK64924-02 (A.D.). The authors have no competing financial interests.

###

Adriana Donovan, Christine A. Lima, Jack L. Pinkus, Geraldine S. Pinkus, Leonard I. Zon, Sylvie Robine, and Nancy C. Andrews: "The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis"

Publishing in Cell Metabolism, Volume 1, Number 3, March 2005, pages 191-200. http://www.cellmetabolism.org


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Cite This Page:

Cell Press. "Iron Exporter Revealed That May Explain Common Human Disorder." ScienceDaily. ScienceDaily, 31 March 2005. <www.sciencedaily.com/releases/2005/03/050329132539.htm>.
Cell Press. (2005, March 31). Iron Exporter Revealed That May Explain Common Human Disorder. ScienceDaily. Retrieved January 27, 2015 from www.sciencedaily.com/releases/2005/03/050329132539.htm
Cell Press. "Iron Exporter Revealed That May Explain Common Human Disorder." ScienceDaily. www.sciencedaily.com/releases/2005/03/050329132539.htm (accessed January 27, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Tuesday, January 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Mistakes Should Serve a Lesson Says WHO

Ebola Mistakes Should Serve a Lesson Says WHO

AFP (Jan. 25, 2015) — The World Health Organization&apos;s chief on Sunday admitted the UN agency had been caught napping on Ebola, saying it should serve a lesson to avoid similar mistakes in future. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Disneyland Measles Outbreak Spreads To 5 States

Disneyland Measles Outbreak Spreads To 5 States

Newsy (Jan. 24, 2015) — Much of the Disneyland measles outbreak is being blamed on the anti-vaccination movement. The CDC encourages just about everyone get immunized. Video provided by Newsy
Powered by NewsLook.com
Growing Measles Outbreak Worries Calif. Parents

Growing Measles Outbreak Worries Calif. Parents

AP (Jan. 23, 2015) — Public health officials are rushing to contain a measles outbreak that has sickened 70 people across 6 states and Mexico. The AP&apos;s Raquel Maria Dillon has more. (Jan. 23) Video provided by AP
Powered by NewsLook.com
Smart Wristband to Shock Away Bad Habits

Smart Wristband to Shock Away Bad Habits

Reuters - Innovations Video Online (Jan. 23, 2015) — A Boston start-up is developing a wristband they say will help users break bad habits by jolting them with an electric shock. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins