Featured Research

from universities, journals, and other organizations

Medical Researchers Say Statins, Other Cholesterol-Depleting Agents Affect Hypertension

Date:
April 12, 2005
Source:
University Of California, San Diego
Summary:
Cholesterol-lowering agents, such as the widely-prescribed statin drugs, and cholesterol-blocking agents may prove to be “novel therapeutic agents to modify cellular calcium that contributes to the development of pulmonary hypertension,” according to Hemal H. Patel, who leads a multidisciplinary team of researchers at the UCSD School of Medicine.

Cholesterol-lowering agents, such as the widely-prescribed statin drugs, and cholesterol-blocking agents may prove to be “novel therapeutic agents to modify cellular calcium that contributes to the development of pulmonary hypertension,” according to Hemal H. Patel, who leads a multidisciplinary team of researchers at the UCSD School of Medicine.

Presenting his research at the 35th Congress of the International Union of Physiological Sciences on Tuesday, April 5 in San Diego, Patel said the team found a previously unappreciated cellular and molecular mechanism for the disease process in idiopathic pulmonary hypertension (IPAH), which was previously called primary pulmonary hypertension. He added that the mechanism found may be amenable to treatment with current and future therapies and might provide more substantial, long-term and efficacious benefit to those who have IPAH.

A severe clinical disease with a poor prognosis, untreated IPHA leads to heart failure and death in two to eight years. Because of limited understanding of the cellular and molecular determinants of the disease process, current therapy is limited and aimed towards symptomatic relief.

Patel, who is a post doctoral fellow in the lab of Paul Insel, M.D., UCSD professor of pharmacology, said two factors that contribute to the disease are dependent on cellular calcium: constriction of vessels, and uncontrolled cell growth resulting in thickening of vessels. The UCSD team sought to determine if IPAH has altered caveolae, which in Latin means “little caves,” on the membrane composed of cholesterol that control the intake of calcium into cells. They also wanted to know if agents that modify cellular cholesterol might limit calcium intake and ultimately limit the two factors (constriction and growth) in vessels that contribute to the disease process. These drugs then might provide for a novel therapy that not merely provides temporary relief of disease symptoms, but helps alleviate the underlying cause of IPAH.

In their research, the team saw that “smooth muscle cells isolated from pulmonary arteries of patients with IPAH indeed had more caveolae on the cell membrane compared to cells from normal individuals, and also that there was a higher calcium intake into the diseased cells,” Patel reported. Subsequent treatment of the IPAH cells with an agent that depletes cholesterol (methyl-beta-cyclodextrin, or MBCD), or “a statin (in this case, lovostatin, sold as Mevacor by Merck), which blocks cholesterol synthesis, resulted in a disruption of the caveolae and reduced the amount of calcium that entered the cells.

“Additionally, these two treatments also decreased the growth rate of the diseased cells,” Patel said. Taken together, the results “mean that the micro-structure of the cell membrane is involved in controlling the intake of calcium and that the cholesterol modifiers of these structures may serve as novel therapeutics to reduce vessel constriction and cell growth associated with increased calcium intake in IPAH,” Patel stated.

The next steps, Patel explained, are to understand the nature of the proteins located on the caveolae and how these structures communicate with the internal regions of cells to influence calcium intake into the cell. He said the UCSD researchers “already have begun looking at the expression and localization of ion channels into caveolae that may further explain the increased calcium intake into cell.”

In addition to Patel, researchers included Insel and Fiona Murray, Ph.D., UCSD Department of Pharmacology; Shen Zhang, Ph.D. and Jason X-J Yuan, M.D., Ph.D., UCSD Department of Medicine, and Patricia A. Thistlethwaite, M.D., Ph.D., UCSD Department of Surgery. The study was funded by the National Institutes of Health.


Story Source:

The above story is based on materials provided by University Of California, San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University Of California, San Diego. "Medical Researchers Say Statins, Other Cholesterol-Depleting Agents Affect Hypertension." ScienceDaily. ScienceDaily, 12 April 2005. <www.sciencedaily.com/releases/2005/04/050411204830.htm>.
University Of California, San Diego. (2005, April 12). Medical Researchers Say Statins, Other Cholesterol-Depleting Agents Affect Hypertension. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2005/04/050411204830.htm
University Of California, San Diego. "Medical Researchers Say Statins, Other Cholesterol-Depleting Agents Affect Hypertension." ScienceDaily. www.sciencedaily.com/releases/2005/04/050411204830.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins