Featured Research

from universities, journals, and other organizations

Researchers Unmask Malaria Parasite's Cloaking Mechanism

Date:
April 25, 2005
Source:
Howard Hughes Medical Institute
Summary:
Scientists are making strides in understanding how the malaria parasite disguises itself to avoid detection by the immune system. Their findings could lead to the development of new drugs for a disease that causes more than 300 million acute illnesses and at least one million deaths each year.

Scientists are making strides in understanding how the malaria parasite Plasmodium falciparum disguises itself to avoid detection by the immune system. The findings could lead to the development of new drugs for a disease that causes more than 300 million acute illnesses and at least one million deaths each year, most of them in developing countries.

Individuals infected with malaria cannot develop an effective immune response because the parasite that causes the disease is a master of disguise. Throughout its lifetime, P. falciparum continually changes the version of a protein known as PfEMP1 that it deposits on the surface of infected cells. By the time the immune system learns to recognize the protein and starts making antibodies against it, the parasite has switched to another form of the protein, and the game of hide and seek starts over.

In a new study, scientists led by Alan Cowman and Brendan Crabb, Howard Hughes Medical Institute (HHMI) international research scholars at The Walter and Eliza Hall Institute of Medical Research in Melbourne, Australia, set out to test the hypothesis that P. falciparum uses gene silencing to mask its presence. Their findings are published in the April 8, 2005, issue of the journal Cell. The study also involved researchers from Monash University in Clayton, Australia, the University of Melbourne, and the Institut Pasteur in Paris.

Since the mid-1990s, researchers have known that a family of genes known as var encode PfEMP1. While the parasite's genome contains at least 50 var genes, only one is expressed at any given time, giving rise to a single version of the PfEMP1 protein. Over the course of an infection, expression switches from one var gene to another -- a phenomenon that until now, scientists have not understood.

The researchers say that teasing out the mechanism by which the var genes are switched on or off could lead to the development of novel drugs for malaria. "If you could work out a way of causing the parasite to switch all the var genes on, then the body would see all the variations of var genes, and the immune system would be able to control the infection," said Cowman.

To assess whether a region of DNA containing a particular var gene was active or silent, the scientists measured expression of a gene that they artificially inserted adjacent to var in a population of parasites. The introduced gene encoded resistance to a drug. When the researchers exposed the parasites to that drug, they found that gene silencing was indeed at work. In some parasites, the DNA region was active, and the parasites showed resistance to the drug. In other parasites, the region was not being transcribed, and the drug successfully blocked the biochemical reaction it is meant to block.

After examining the regions around the silent and active var genes, the researchers found differences in the way that the DNA was packaged--some of the DNA was wrapped so tightly with proteins that it ceased to be accessible for transcription. This finding implicated a protein called silent information regulator 2 (SIR2), which is already known to play a role in gene silencing in yeast by modifying gene packaging.

To examine the potential role of SIR2 in silencing var genes, the scientists created a parasite that lacked a functioning gene for that protein. They found that the genetically-altered parasite expressed a greater number of var genes than parasites with normal SIR2.

"Silencing occurs by packaging up the DNA into a tight form and preventing it from being expressed. That tight packaging involves SIR2," said Cowman. "The question then was how one of those genes is switched back on."

The researchers knew that, in some organisms, gene regulation is dictated not only by DNA sequence and the way that sequence is folded, but also by physical location. In these cases, the expression of genes located at the edge of the nucleus involves the movement of a gene into certain accessible compartments. They wondered if nuclear compartments came into play in var gene activation.

Using a technique called fluorescent in situ hybridization (FISH), which employs fluorescent-labeled probes specific for particular segments of DNA, the investigators gauged the position of var genes in on and off states and found that their hunch was correct.

"There does indeed appear to be discrete nuclear compartments that allow gene expression to occur," said Crabb. "Every now and again, one of the genes moves into the right spot and gets activated."

Because some var genes are located near each other, Cowman said, sometimes more than one var gene is moved into a compartment at the same time. Since this does not result in the simultaneous expression of multiple var genes, it suggests that there are other tiers of regulation that must be uncovered before scientists can hope to create new drugs.


Story Source:

The above story is based on materials provided by Howard Hughes Medical Institute. Note: Materials may be edited for content and length.


Cite This Page:

Howard Hughes Medical Institute. "Researchers Unmask Malaria Parasite's Cloaking Mechanism." ScienceDaily. ScienceDaily, 25 April 2005. <www.sciencedaily.com/releases/2005/04/050425110824.htm>.
Howard Hughes Medical Institute. (2005, April 25). Researchers Unmask Malaria Parasite's Cloaking Mechanism. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2005/04/050425110824.htm
Howard Hughes Medical Institute. "Researchers Unmask Malaria Parasite's Cloaking Mechanism." ScienceDaily. www.sciencedaily.com/releases/2005/04/050425110824.htm (accessed July 31, 2014).

Share This




More Health & Medicine News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

House Republicans Vote to Sue Obama Over Healthcare Law

House Republicans Vote to Sue Obama Over Healthcare Law

Reuters - US Online Video (July 31, 2014) The Republican-led House of Representatives votes to sue President Obama, accusing him of overstepping his executive authority in making changes to the Affordable Care Act. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Despite Health Questions, E-Cigs Are Beneficial: Study

Despite Health Questions, E-Cigs Are Beneficial: Study

Newsy (July 31, 2014) Citing 81 previous studies, new research out of London suggests the benefits of smoking e-cigarettes instead of regular ones outweighs the risks. Video provided by Newsy
Powered by NewsLook.com
Dangerous Bacteria Kills One in Florida

Dangerous Bacteria Kills One in Florida

AP (July 31, 2014) Sarasota County, Florida health officials have issued a warning against eating raw oysters and exposing open wounds to coastal and inland waters after a dangerous bacteria killed one person and made another sick. (July 31) Video provided by AP
Powered by NewsLook.com
Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins