Featured Research

from universities, journals, and other organizations

Chaos Is Rare: New Study Reveals The Evolution Of Oscillatory Behavior In Age-structured Species

Date:
May 13, 2005
Source:
University Of Chicago Press Journals
Summary:
In this study, to appear in the July 2005 issue of The American Naturalist, researchers used an adaptive dynamics approach to investigate the evolution of dynamics in a family of age-structured models, where fecundity was density-dependent and where there were trade-offs between survival and reproduction.

Classical ecological theory suggests that simple models can display a range of population behavior: from equilibrium to chaos. However, in real populations, stable and oscillatory behavior is common but chaotic dynamics are not. Although models may allow many different forms of dynamical behavior, evolution perhaps constrains the dynamics that occur. As selection on life-history traits (e.g. investment in fecundity vs. survival) is likely to have population dynamical consequences, models investigating the evolution of dynamics should be undertaken in a life-history framework.

Related Articles


In this study, to appear in the July 2005 issue of The American Naturalist, researchers used an adaptive dynamics approach to investigate the evolution of dynamics in a family of age-structured models, where fecundity was density-dependent and where there were trade-offs between survival and reproduction. They found that the evolutionarily stable population dynamics occurred in an area of parameter space outside, but close to, the bifurcation from stable to oscillatory dynamics.

The evolved dynamics were typically cyclic with a period of 2-3 times the maturation time of the model; this is common in nature, and such cycles are typically called "delayed feedback cycles." Furthermore, at the evolutionarily stable state (ESS), small changes in life-history traits could create marked increases in periodicity, making the dynamics responsive to changes in the system. The study reveals why chaos is rare in nature: it is not evolutionarily stable for the models we consider.

###

Sponsored by the American Society of Naturalists, The American Naturalist is a leading journal in the fields of ecology and evolutionary biology and animal behavior. For more information, please see our website: www.journals.uchicago.edu/AN

J. V. Greenman, T. G. Benton, M. Boots, and A. R. White, "The evolution of oscillatory behavior in age-structured species" 166:1 July 2005.


Story Source:

The above story is based on materials provided by University Of Chicago Press Journals. Note: Materials may be edited for content and length.


Cite This Page:

University Of Chicago Press Journals. "Chaos Is Rare: New Study Reveals The Evolution Of Oscillatory Behavior In Age-structured Species." ScienceDaily. ScienceDaily, 13 May 2005. <www.sciencedaily.com/releases/2005/05/050513103236.htm>.
University Of Chicago Press Journals. (2005, May 13). Chaos Is Rare: New Study Reveals The Evolution Of Oscillatory Behavior In Age-structured Species. ScienceDaily. Retrieved March 31, 2015 from www.sciencedaily.com/releases/2005/05/050513103236.htm
University Of Chicago Press Journals. "Chaos Is Rare: New Study Reveals The Evolution Of Oscillatory Behavior In Age-structured Species." ScienceDaily. www.sciencedaily.com/releases/2005/05/050513103236.htm (accessed March 31, 2015).

Share This


More From ScienceDaily



More Fossils & Ruins News

Tuesday, March 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Giant Amphibian Fossils Found in Portugal

Giant Amphibian Fossils Found in Portugal

Reuters - Light News Video Online (Mar. 31, 2015) — Scientists discover a new species of giant amphibian that was one of the largest predators on earth about 220 million year ago. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Ancient Egyptian Beer Making Vessels Discovered in Israel

Ancient Egyptian Beer Making Vessels Discovered in Israel

AFP (Mar. 30, 2015) — Fragments of pottery used by Egyptians to make beer and dating back 5,000 years have been discovered on a building site in Tel Aviv, the Israeli Antiquities Authority said on Sunday. Duration: 00:51 Video provided by AFP
Powered by NewsLook.com
Party Like It's 3000 BC: Egyptian Beer Vessels Unearthed in Tel Aviv

Party Like It's 3000 BC: Egyptian Beer Vessels Unearthed in Tel Aviv

Reuters - Light News Video Online (Mar. 30, 2015) — Israeli archaeologists unearth ancient Egyptian beer vessels in downtown Tel Aviv. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
New Arthropod Fossil Might Be Relative Of Spiders, Scorpions

New Arthropod Fossil Might Be Relative Of Spiders, Scorpions

Newsy (Mar. 29, 2015) — A 508-million-year-old arthropod that swam in the Cambrian seas is thought to share a common ancestor with spiders and scorpions. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins