Featured Research

from universities, journals, and other organizations

After 150 Years Of Research, Discovery Of How Flames Burn Is Finally Made By Cornell Scientist Named Cool

Date:
May 16, 2005
Source:
Cornell University
Summary:
A compound discovered to be ubiquitous in fire has amazingly eluded detection in spite of 150 years of research on how flames burn, according to a recent paper appearing in the journal Science on its Science Express Web site (May 12, 2005), co-authored by Cornell University Professor Terrill A. Cool.

ITHACA, N.Y. -- Scientists have discovered compounds nearly ubiquitous in fire that have amazingly eluded detection in spite of 150 years of research on how flames burn.

According to a paper in the journal Science on its Science Express Web site (May 12), co-authored by a Cornell University professor, enols, technically in the family of alcohols, are part of the chemical pathway that occurs when a wide variety of fires burn.

Scientists who study combustion never expected to find enols in flames, and until now their detection was obscured by another related compound that shares the same mass and has long been known to exist in fire. A new technique for studying the compounds in flames has allowed researchers to distinguish between these molecules and has made the discovery possible.

"We've found there is this whole class of previously unsuspected chemistry going on in flames," says Terrill Cool, professor of applied and engineering physics at Cornell.

"It is remarkable that even after 150 years of flame chemistry research new compounds can be found," says Craig Taatjes, a combustion chemistry researcher at Sandia National Laboratory in Livermore, Calif., and lead author of the paper.

While the researchers don't know where the discovery will lead, it offers new directions in efforts to reduce soot and other pollutants in flames, improve fuel cells, and model planetary atmospheres and interstellar chemistry.

Enols have a structure that includes properties of both alkenes and alcohols, hence the name (enol). The simplest alkene is ethylene (C2H4), a gas that is produced in nature as a plant hormone and is also a major chemical feedstock (the starting point for manufacturing other substances). The primary commercial use of ethylene is the production of polyethylene, a common plastic. When a hydroxyl group (OH) replaces a hydrogen atom in ethylene, it becomes an enol called ethenol (CH2CHOH), also known as vinyl alcohol. Ethenol exists only as a transient or fleeting species in chemical reactions, but altered, stable forms of ethenol (polyvinyl alcohol) are main ingredients in latex paints, hair sprays, shampoos and glues.

Hundreds of chemical species form and turn into other products when fires burn. Enols are one of these intermediary species. To study fire chemistry, researchers use computer models to simulate chemical reactions during combustion. Now, models must be modified to include enols. Also, by understanding the chemistry of burning from beginning to end, researchers may be able to alter pathways and reduce pollutants, such as soot, that come out of flames.

Astronomers have observed ethenol in interstellar space. The new enol findings could provide clues as to how complex organic molecules form in interstellar space.

A common technique used to determine the components in fire involves taking a sample of the chemicals in a flame, giving them an electrical charge and timing how long it takes for the electrically charged molecules, called ions, to reach a detector. Heavier ions take longer, so researchers calculate a molecular mass based on timing. Scientists use the results to make models of chemical reactions that occur during combustion.

Until now, scientists who study combustion never suspected enols existed in flames. They knew of another closely related molecule (called an isomer) that shares the same composition and mass, is also an intermediary, but has a different structure, which alters its physical and chemical properties

The researchers applied a new technique that reveals both the structure and the mass. The technique relies on the fact that forming ions from different isomers requires different amounts of energy. By making the ions with photons, or particles of light, tuned to specific energies, isomers can be distinguished.

"The new technique allows us to look at things people couldn't see before," said Cool. "We weren't looking for ethenol. Nobody had suspected it was there, but then we found it."

Other than Taatjes, Cool's co-authors include other researchers from the Sandia National Laboratory, the University of Massachusetts-Amherst, the University of Science and Technology of China and the University of Bielefeld (Germany).


Story Source:

The above story is based on materials provided by Cornell University. Note: Materials may be edited for content and length.


Cite This Page:

Cornell University. "After 150 Years Of Research, Discovery Of How Flames Burn Is Finally Made By Cornell Scientist Named Cool." ScienceDaily. ScienceDaily, 16 May 2005. <www.sciencedaily.com/releases/2005/05/050516080917.htm>.
Cornell University. (2005, May 16). After 150 Years Of Research, Discovery Of How Flames Burn Is Finally Made By Cornell Scientist Named Cool. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2005/05/050516080917.htm
Cornell University. "After 150 Years Of Research, Discovery Of How Flames Burn Is Finally Made By Cornell Scientist Named Cool." ScienceDaily. www.sciencedaily.com/releases/2005/05/050516080917.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins