Featured Research

from universities, journals, and other organizations

Global Wind Map May Provide Better Locations For Wind Farms

Date:
May 16, 2005
Source:
American Geophysical Union
Summary:
A new global wind power map has quantified global wind power and may help planners place turbines in locations that can maximize power from the winds and provide widely available low-cost energy. After analyzing more than 8,000 wind speed measurements in an effort to identify the world's wind power potential for the first time, researchers suggest that wind captured at specific locations, if even partially harnessed, can generate more than enough power to satisfy the world's energy demands.

WASHINGTON - A new global wind power map has quantified global wind power and may help planners place turbines in locations that can maximize power from the winds and provide widely available low-cost energy. After analyzing more than 8,000 wind speed measurements in an effort to identify the world's wind power potential for the first time, Cristina Archer and Mark Jacobson of Stanford University suggest that wind captured at specific locations, if even partially harnessed, can generate more than enough power to satisfy the world's energy demands. Their report will be published in May in the Journal of Geophysical Research-Atmospheres, a publication of the American Geophysical Union.

Related Articles


The researchers collected wind speed measurements from approximately 7,500 surface stations and another 500 balloon-launch stations to determine global wind speeds at 80 meters [300 feet] above the ground surface, which is the hub height of modern wind turbines. Using a new interpolation technique to estimate the wind speed at that elevation, the authors report that nearly 13 percent of the stations they reviewed experience winds with an average annual speed strong enough for power generation. They note that, based on their expectations of other global areas, an even greater percentage of locations would likely reach the 6.9 meters per second [15 miles per hour] wind speed considered strong enough to be economically feasible.

Such wind speeds at 80 meters, referred to as wind power Class 3, were found in every region of the world, although North America was found to have the greatest wind power potential. The researchers also found that some of the strongest winds were observed in Northern Europe, along the North Sea, while the southern tip of South America and the Australian island of Tasmania also recorded significant and sustained strong winds at the turbine blade height. In North America, the most consistent winds were found in the Great Lakes region and from ocean breezes along the eastern, western and southern coasts. Overall, the researchers calculated winds at 80 meters [300 feet] traveled over the ocean at approximately 8.6 meters per second and at nearly 4.5 meters per second over land [20 and 10 miles per hour, respectively].

"The main implication of this study is that wind, for low-cost wind energy, is more widely available than was previously recognized," Archer said. "The methodology in the paper can be utilized for several applications, such as determining elevated wind speeds in remote areas or to evaluate the benefits of distributed wind power."

The study also estimated the amount of global wind power that could be harvested at locations with suitably strong winds. The authors found that the locations with sustainable Class 3 winds could produce approximately 72 terawatts and that capturing even a fraction of that energy could provide the 1.6-1.8 terawatts that made up the world's electricity usage in the year 2000. A terawatt is 1 billion watts, a quantity of energy that would otherwise require more than 500 nuclear reactors or thousands of coal-burning plants. Converting as little as 20 percent of potential wind energy to electricity could satisfy the entirety of the world's energy demands, but the researchers caution that there are considerable practical barriers to reaping the wind's potential energy.

Chief among those barriers is creating and maintaining a dense array of modern turbines that would be needed to harness the wind power. Some sources have suggested that millions of turbines would be needed to produce an acceptable level of energy and that alternative energy sources would still be necessary to produce power when the wind speeds fall below a certain threshold. Creating a large field of turbines could also be hazardous to birds and may produce unacceptable noise levels.

The current research, however, indicates that several of those limitations can be overcome with better placement of wind turbines. The researchers report that their study can assist in locating wind farms in regions known for strong and consistent winds, which may help avoid some of the problems with intermittent winds. In addition, they suggest that the inland locations of many existing wind farms may explain their inefficiency.

"It is our hope that this study will foster more research in areas that were not covered by our data, or economic analyses of the barriers to the implementation of a wind-based global energy scenario," Archer concluded.

###

The research was supported by NASA and by Stanford University's Global Climate and Energy Project (GCEP).


Story Source:

The above story is based on materials provided by American Geophysical Union. Note: Materials may be edited for content and length.


Cite This Page:

American Geophysical Union. "Global Wind Map May Provide Better Locations For Wind Farms." ScienceDaily. ScienceDaily, 16 May 2005. <www.sciencedaily.com/releases/2005/05/050516192202.htm>.
American Geophysical Union. (2005, May 16). Global Wind Map May Provide Better Locations For Wind Farms. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2005/05/050516192202.htm
American Geophysical Union. "Global Wind Map May Provide Better Locations For Wind Farms." ScienceDaily. www.sciencedaily.com/releases/2005/05/050516192202.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins