Featured Research

from universities, journals, and other organizations

Physicists Control The Flip Of Electron Spin In New Study

Date:
May 27, 2005
Source:
Ohio University
Summary:
Today's computers and other technological gizmos operate on electronic charges, but researchers predict that a new generation of smaller, faster, more efficient devices could be developed based on another scientific concept -- electronic "spin." The problem, however, is that researchers have found it challenging to control or predict spin -- which keeps practical applications out of reach. But physicists now have found a way to manipulate the spin of an electron with voltage from a battery.

ATHENS, Ohio -- Today's computers and other technological gizmos operate on electronic charges, but researchers predict that a new generation of smaller, faster, more efficient devices could be developed based on another scientific concept -- electronic "spin." The problem, however, is that researchers have found it challenging to control or predict spin -- which keeps practical applications out of reach.

Related Articles


But physicists in Europe, California and at Ohio University now have found a way to manipulate the spin of an electron with a jolt of voltage from a battery, according to research findings published in the recent issue of the journal Physical Review Letters.

In the new study, scientists applied voltage to the electron in a quantum dot, which is a tiny, nanometer-sized semiconductor. The burst of power changed the direction of the electron's spin -- which can move either up or down. This also caused it to emit a small particle of light called a photon, explained Richard Warburton, a physicist with Heriot-Watt University in Edinburgh, Scotland, and lead author on the new paper.

"Usually you have no control over this at all -- an electron flips its spin at some point, and you scratch your head and wonder why it happened. But in our experiment, we can choose how long this process takes," he said.

The experiment was based on a theory by Sasha Govorov, an Ohio University associate professor of physics and astronomy who is co-author on the current paper. Pierre Petroff, a scientist with the University of California at Santa Barbara, contributed the semiconductor used in the experiment, Indium Arsenide, which commonly is used in electronics. "It's one of those happy collaborations -- Pierre has given us some fantastic material and Sasha has come up with some really smart ideas," Warburton said.

The scientists were able to manipulate how long it would take for the electron to flip its spin and emit a photon -- from one to 20 nanoseconds. But Govorov's theory suggests that 20 nanoseconds isn't the upper limit, which will lead the physicists to try out longer time periods.

Scientists' abilities to control the spin of the electron help determine the properties of the photon, which in turn could have implications for the development of optoelectronics and quantum cryptography. Photons could be encoded with secure information, which could serve as the basis for anti-eavesdropping technology, Warburton said.

The current study is one of many in the growing field of nanoscience that aims to find, understand and control physical effects at the nanoscale that could serve as the basis of a new generation of technology that is smaller and more powerful than today's electronic devices, Govorov said.

"The principles, knowledge and experience will be used for practical, real devices, we hope," he said.

The study was funded by EPSRC in the United Kingdom, Ohio University, Volkswagen, and the Alexander von Humboldt Foundations, with additional support by the Scottish Executive and the Royal Society of Edinburgh. Collaborators on the paper are Jason Smith and Paul Dalgarno of Heriot-Watt University, Khaled Karrai of the Ludwig-Maximilians-Universitat in Germany, and Brian Gerardot and Pierre Petroff with the University of California Santa Barbara.


Story Source:

The above story is based on materials provided by Ohio University. Note: Materials may be edited for content and length.


Cite This Page:

Ohio University. "Physicists Control The Flip Of Electron Spin In New Study." ScienceDaily. ScienceDaily, 27 May 2005. <www.sciencedaily.com/releases/2005/05/050527170130.htm>.
Ohio University. (2005, May 27). Physicists Control The Flip Of Electron Spin In New Study. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2005/05/050527170130.htm
Ohio University. "Physicists Control The Flip Of Electron Spin In New Study." ScienceDaily. www.sciencedaily.com/releases/2005/05/050527170130.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins