Featured Research

from universities, journals, and other organizations

MIT's Nanoprinter Could Mass-produce Nano-devices

Date:
June 9, 2005
Source:
Massachusetts Institute Of Technology
Summary:
Just as the printing press revolutionized the creation of reading matter, a "nano-printing" technique developed at MIT could enable the mass production of nano-devices currently built one at a time. The most immediate candidate for this innovation is the DNA microarray, a nano-device used to diagnose and understand genetic illnesses such as Alzheimer's, viral illnesses such as AIDS, and certain types of cancer. The ability to mass produce these complex devices would make DNA analysis as common and inexpensive as blood testing, and thus greatly accelerate efforts to discover the origins of disease.

These DNA dots, each only about 200 nanometers in diameter, were printed using a new 'nano-printing' technique developed at MIT.
Credit: Image courtesy / Francesco Stellacci and Arum Amy Yu

CAMBRIDGE, Mass.--Just as the printing press revolutionized the creation of reading matter, a "nano-printing" technique developed at MIT could enable the mass production of nano-devices currently built one at a time.

The most immediate candidate for this innovation is the DNA microarray, a nano-device used to diagnose and understand genetic illnesses such as Alzheimer's, viral illnesses such as AIDS, and certain types of cancer. The ability to mass produce these complex devices would make DNA analysis as common and inexpensive as blood testing, and thus greatly accelerate efforts to discover the origins of disease.

The demand for ever-shrinking devices of ever-increasing complexity in areas from biomedicine to information technology has spurred several research efforts toward high-resolution, high-throughput nano-printing techniques. Now researchers led by Professor Francesco Stellacci of the Department of Materials Science and Engineering have developed a printing method that is unmatched in both information content per printing cycle and resolution. They achieved the latter using what Arum Amy Yu, an MSE graduate student and member of the research team, calls "nature's most efficient printing technique: the DNA/RNA information transfer."

A paper on the work was published in May in the ASAP online section of the journal Nano Letters. Stellacci and Yu's coauthors are Professor Henry Smith and Tim Savas from MIT's Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, and G. Scott Taylor and Anthony Guiseppe-Elie from Virginia Commonwealth University.

In the new printing method, called Supramolecular Nano-Stamping (SuNS), single strands of DNA essentially self-assemble upon a surface to duplicate a nano-scale pattern made of their complementary DNA strands. The duplicates are identical to the master and can thus be used as masters themselves. This increases print output exponentially while enabling the reproduction of very complex nano-scale patterns.

One such pattern is found on a DNA microarray, a silicon or glass chip printed with up to 500,000 tiny dots. Each dot comprises multiple DNA molecules of known sequence, i.e. a piece of an individual's genetic code. Scientists use DNA microarrays to discover and analyze a person's DNA or messenger-RNA genetic code. This allows for, say, the early diagnosis of liver cancer, or the prediction of the chances that a couple will produce a child with a genetic disease.

Frequent, widespread use of these devices is hindered by the fact that producing them is a painstaking process that involves at least 400 printing steps and costs approximately $500 per microarray.

MIT's nano-printing method requires only three steps and could reduce the cost of each microarray to under $50. "This would completely revolutionize diagnostics," said Stellacci. With the ability to mass produce these devices and thus make DNA analysis routine, "we could know years in advance of cancer, hepatitis, or Alzheimer's."

Another benefit would be large-scale diagnostics that could provide useful information about disease. Take diabetes. "We don't know if it's genetic. The only way to find out is to test a lot of people," said Stellacci. "The more we test with microarrays, the more we know about illnesses, and the more we can detect them."

SuNS has applications beyond DNA microarrays. Materials both organic and inorganic (metal nanoparticles, for example) can be made to assemble along a pattern composed of DNA strands. This makes SuNS a versatile technology that could be used to produce other complex nano-devices currently manufactured slowly and expensively: micro- and nano-fluidics channels, single-electron transistors, optical biosensors and metallic wires, to name a few.

###

Stellacci recently received renewed funding from the Deshpande Center for Technological Innovation to continue work on SuNS. The work is also funded by the National Science Foundation.


Story Source:

The above story is based on materials provided by Massachusetts Institute Of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute Of Technology. "MIT's Nanoprinter Could Mass-produce Nano-devices." ScienceDaily. ScienceDaily, 9 June 2005. <www.sciencedaily.com/releases/2005/06/050608054226.htm>.
Massachusetts Institute Of Technology. (2005, June 9). MIT's Nanoprinter Could Mass-produce Nano-devices. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2005/06/050608054226.htm
Massachusetts Institute Of Technology. "MIT's Nanoprinter Could Mass-produce Nano-devices." ScienceDaily. www.sciencedaily.com/releases/2005/06/050608054226.htm (accessed September 21, 2014).

Share This



More Health & Medicine News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sierra Leone in Lockdown to Control Ebola

Sierra Leone in Lockdown to Control Ebola

AP (Sep. 21, 2014) Sierra Leone residents remained in lockdown on Saturday as part of a massive effort to confine millions of people to their homes in a bid to stem the biggest Ebola outbreak in history. (Sept. 20) Video provided by AP
Powered by NewsLook.com
Sierra Leone's Nationwide Ebola Curfew Underway

Sierra Leone's Nationwide Ebola Curfew Underway

Newsy (Sep. 20, 2014) Sierra Leone is locked down as aid workers and volunteers look for new cases of Ebola. Video provided by Newsy
Powered by NewsLook.com
Changes Found In Brain After One Dose Of Antidepressants

Changes Found In Brain After One Dose Of Antidepressants

Newsy (Sep. 19, 2014) A study suggest antidepressants can kick in much sooner than previously thought. Video provided by Newsy
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins