Featured Research

from universities, journals, and other organizations

'Brown Fat' Cells Hold Clues For Possible Obesity Treatments

Date:
June 8, 2005
Source:
Children's Hospital Boston
Summary:
Scientists at Joslin Diabetes Center and Children's Hospital Boston have discovered a group of genes that govern the genesis of calorie-burning fat cells. This discovery may lead to new ways to treat obesity, which is now at epidemic levels.

Scientists at Joslin Diabetes Center and Children's Hospital Boston have discovered a group of genes that govern the genesis of calorie-burning fat cells. This discovery may lead to new ways to treat obesity, which is now at epidemic levels.

Related Articles


Drs. Yu-Hua Tseng, and Atul J. Butte of Children's Hospital Boston and HMS, shared first authorship on the study, which appears in the June edition of the journal Nature Cell Biology.

In laboratory studies of mouse cells, the research team identified genes that govern how precursor cells give rise to mature brown fat cells. There are two main types of fat cells in the body -- white and brown. White fat cells are the "conventional" form of fat that we all recognize. They are designed to store energy for use in times of need. Chocked full of lipid droplets, these big cells accumulate under the skin and around internal organs.

By contrast, the main role of brown fat cells is to burn energy and generate heat. They contain small lipid droplets tucked between tiny energy factories called mitochondria. In mice, brown fat cells are found throughout the body and are present during the entire life cycle. In humans, they are principally found in the neck area of newborns, helping their tiny bodies generate heat. Brown fat cells largely disappear by adulthood, but their precursors still remain in the body, lodged in white-fat depots.

Because brown fat cells burn calories, the scientists theorized that finding ways to encourage the development of brown fat might be good for treating obesity. In previous research, the scientists were among the first to develop cell lines of precursor cells that give rise to brown fat cells. "We used those cell lines to study how insulin affects the conversion of fat precursors, or preadipocytes, into mature brown adipocytes," said Dr. Tseng.

The researchers compared cell lines from normal "wild-type" mice to cell lines from mice that genetically lacked key components of the insulin-signaling network which are important to insulin's role in letting food nutrients enter the body's cells. If cells resist insulin, the body cannot get the energy it needs. This "insulin resistance" is the main culprit in the onset of in type 2 diabetes. Being overweight or obese has long been implicated with insulin resistance and type 2 diabetes and also raises the risk for heart disease, stroke and cancer.

The team studied "knockout" cell lines of brown preadipocytes that lacked insulin receptor substrates (IRS) numbered 1 through 4, which are the first steps in insulin signaling inside the cell. In cell lines lacking IRS1, the precursors failed to develop into mature brown fat cells. Importantly, when they added the gene for IRS1 back into the knockout cells, the precursors recovered most of their ability to differentiate into brown fat cells. Varying effects occurred with the knockout of genes for IRS2, IRS3 and IRS4. Using DNA chips to analyze these cells, a strong genetic pattern emerged that predicted the potential of precursors to differentiate into mature brown fat cells.

Of the 347 genes that were altered in the cells that could not form brown fat, one of the most over-expressed was for a protein called necdin. Until this study, necdin was associated largely with nerve tissue and Prader-Willi syndrome, a neurodevelopmental disorder in children characterized by mental retardation, feeding problems and obesity. The Joslin researchers discovered that reducing the level of necdin is essential for precursor cells to give rise to brown fat cells. They also found that a transcription factor called CREB is involved in this reduction. "As we learn more about the genesis of brown fat cells and the genes governing them, we may be able to target those genes with drugs or other agents to create powerful tools to fight obesity," said Dr. C. Ronald Kahn, President of Joslin Diabetes Center, Professor of Medicine at Harvard Medical School and principal investigator of the study.


Story Source:

The above story is based on materials provided by Children's Hospital Boston. Note: Materials may be edited for content and length.


Cite This Page:

Children's Hospital Boston. "'Brown Fat' Cells Hold Clues For Possible Obesity Treatments." ScienceDaily. ScienceDaily, 8 June 2005. <www.sciencedaily.com/releases/2005/06/050608060136.htm>.
Children's Hospital Boston. (2005, June 8). 'Brown Fat' Cells Hold Clues For Possible Obesity Treatments. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2005/06/050608060136.htm
Children's Hospital Boston. "'Brown Fat' Cells Hold Clues For Possible Obesity Treatments." ScienceDaily. www.sciencedaily.com/releases/2005/06/050608060136.htm (accessed October 30, 2014).

Share This



More Health & Medicine News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Google To Use Nanoparticles, Wearables To Detect Disease

Google To Use Nanoparticles, Wearables To Detect Disease

Newsy (Oct. 29, 2014) Google X wants to improve modern medicine with nanoparticles and a wearable device. It's all an attempt to tackle disease detection and prevention. Video provided by Newsy
Powered by NewsLook.com
Can Drinking Milk Lead To Early Death?

Can Drinking Milk Lead To Early Death?

Newsy (Oct. 29, 2014) Researchers in Sweden released a study showing heavy milk drinkers face an increased mortality risk from a variety of causes. Video provided by Newsy
Powered by NewsLook.com
Obama: The US Will Not 'run and Hide' From Ebola

Obama: The US Will Not 'run and Hide' From Ebola

AP (Oct. 29, 2014) Surrounded by health care workers in the White House East Room, President Barack Obama said the U.S. will likely see additional Ebola cases in the weeks ahead. But he said the nation can't seal itself off in the fight against the disease. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins