Featured Research

from universities, journals, and other organizations

White-light Laser Is Basis Of New Optical Tweezers And Microscope

Date:
June 17, 2005
Source:
Penn State
Summary:
Penn State engineers have used a "white-light laser" to produce a new type of optical "tweezers" that not only traps, holds and moves microscopic objects but also can perform characterization of the object via spectroscopy at the same time.

University Park, Pa. -- Penn State engineers have used a "white-light laser" to produce a new type of optical "tweezers" that not only traps, holds and moves microscopic objects but also can perform characterization of the object via spectroscopy at the same time.

Dr. Zhiwen Liu, assistant professor of electrical engineering who leads the project, says, "Our team is among the first to demonstrate the 3-dimensional trapping and manipulation of microscopic objects using white laser light. Our novel tweezers, thanks to the broadband nature of white light, also have the potential to perform optical scattering spectroscopy of the trapped object over a broad wavelength range."

Through optical spectroscopy, researchers can probe the trapped particle's size, shape, refractive index and chemical composition. In experiments, so far, the team has demonstrated the tweezers's capabilities with three kinds of polymer microspheres of different sizes.

The new tweezers were described Friday, May 27, in a paper, "White Light Supercontinuuum Optical Tweezers," presented at the Conference on Laser and Electro-Optics/Quatum Electronics and Laser Science in Baltimore Md. The authors are graduate students Peng Li and Kebin Shi as well as Liu. The tweezers were also described in the paper, "Manipulation and Spectroscopy of a Single Particle by Use of White-light Optical Tweezers," published earlier this year in Optics Letters.

The Penn State researchers have also incorporated a white light laser into a confocal microscope system to speed image production while retaining the image clarity and ability to observe the object in layers available in conventional instruments. Images that require a second or more to be produced with a conventional confocal microscope need only tens of milliseconds in the white-light instrument.

Liu notes that many biological processes occur in milliseconds or less and the new confocal microscope has the potential to film them as they happen. He expects both the new tweezers and microscope to have applications not only in the biological and medical sciences but also in the microcircuit chip industry.

Propagating short laser pulses of infrared light, for example, in a photonic crystal fiber broadens its spectrum dramatically and generates supercontiuum white light. The white light produced in this way can be focused to a tiny spot just like a normal laser.

The Penn State researcher notes, "The broad spectrum of supercontinuum white light increases its information capacity and offers new opportunities for next generation optical information systems. "

The microscope was described in the paper, "Chromatic Confocal Microscopy Using Supercontiuum Light," published last year in Optics Express.

The research was supported by start-up funds from Penn State's College of Engineering and Department of Electrical Engineering.


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Cite This Page:

Penn State. "White-light Laser Is Basis Of New Optical Tweezers And Microscope." ScienceDaily. ScienceDaily, 17 June 2005. <www.sciencedaily.com/releases/2005/06/050616055311.htm>.
Penn State. (2005, June 17). White-light Laser Is Basis Of New Optical Tweezers And Microscope. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2005/06/050616055311.htm
Penn State. "White-light Laser Is Basis Of New Optical Tweezers And Microscope." ScienceDaily. www.sciencedaily.com/releases/2005/06/050616055311.htm (accessed October 1, 2014).

Share This



More Matter & Energy News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins