Featured Research

from universities, journals, and other organizations

Nanotechnology Confronts The 'Bad Hair Day,' Tests New Conditioner

Date:
September 8, 2005
Source:
Ohio State University
Summary:
Ohio State University researchers have just completed the first comprehensive study of human hair on the nanometer level. Special equipment enabled Bharat Bhushan and his colleagues to get an unprecedented close-up look at a rogue's gallery of bad hair days -- from chemically overprocessed locks to curls kinked up by humidity.

Above, a scanning electron microscope image of a healthy human hair near the tip of the hair shaft – a portion that is showing obvious wear and tear.
Credit: Image courtesy of Ohio State University

COLUMBUS , Ohio – Ohio State University researchers have justcompleted the first comprehensive study of human hair on the nanometerlevel.

Special equipment enabled Bharat Bhushan and hiscolleagues to get an unprecedented close-up look at a rogue's galleryof bad hair days – from chemically overprocessed locks to curls kinkedup by humidity.

They used the techniques they developed to test a new high-tech hair conditioner.

Ultimately,the same techniques could be used to improve lipstick, nail polish andother beauty products, said Bhushan , Ohio Eminent Scholar and theHoward D. Winbigler Professor of mechanical engineering at Ohio State .

Hisspecialty is nanotribology – the measurement of very small things, suchas the friction between moving parts in microelectronics.

Atfirst, hair seemed like an unlikely study subject, he said. Then he wasinvited to give a lecture to scientists at Procter & Gamble Co.

“Itturns out that, for hair, friction is a major issue,” he said. Everydayactivities like washing, drying, combing and brushing all cause hairsto rub against objects and against each other, he explained. Over time,the friction causes wear and tear – two processes that he and hiscolleagues are very familiar with, though they're normally studying thewear between tiny motors and gears.

“We realized that beauty care was an emerging area for us and we should dive in,” Bhushan said.

Heconsulted for the company until P&G became an industrial partner inhis laboratory, supplying him with samples of healthy and damaged hair.The Ohio State engineers examined hairs under an atomic forcemicroscope (AFM), a tool that let them scratch the surface of hairs andprobe inside the hair shaft with a very tiny needle. They publishedtheir results in the journal Ultramicroscopy, in a paper now availableon the Web.

Among their findings: hair conditioners typically do not evenly cover the entire hair shaft.

P&Grecently developed a new formula with additives to make the conditionercoat the hair evenly. In tests, Bhushan found that the new conditionerdid coat hair more evenly.

Meanwhile, they examined healthy anddamaged hairs under an electron microscope and an AFM, and simulatedeveryday wear and tear by rubbing hairs together and againstpolyurethane film to simulate skin.

“We didn't know what we werelooking for,” Bhushan said. “People know a lot about hair, but nobodyhas used an AFM to really study the structure of hair. So we alreadyknew some things, but otherwise we didn't know what to expect.”

Underthe electron microscope, individual hairs looked like tree trunks,wrapped in layers of cuticle that resembled bark. In healthy hair, thecuticle edges lay flat against the hair shaft, but as hair gets damagedfrom chemical treatments or wear and tear, the cuticle edges begin topeel away from the shaft. That much was already known.

Theresearchers simulated what happens when damaged hair is exposed tohumidity; the hairs plump up, and the cuticles stick out even further,leading to frizz. More frizz meant more friction – a fact confirmed bythe AFM as researchers dragged a tiny needle across the surface.

Conditionertends to stick to the cuticle edges, and can make the hair sticky onthe nanometer scale. The researchers determined that by poking the hairshaft with the needle, and measuring the force required to pull it away.

Theyalso probed inside hairs to measure the hardness of different layers ofthe shaft. Hair has a very complex structure, Bhushan said, and thesefirst ultra-precise measurements of interior structure could one daylead to new products that treat hair from the inside.

In the future, he thinks his AFM techniques could be used to develop wear-resistant nail polishes and lipsticks.

Bhushanconducted this work with graduate student Carmen LaTorre andpostdoctoral researchers Nianhuan Chen and Guohua Wei, all of OhioState .


Story Source:

The above story is based on materials provided by Ohio State University. Note: Materials may be edited for content and length.


Cite This Page:

Ohio State University. "Nanotechnology Confronts The 'Bad Hair Day,' Tests New Conditioner." ScienceDaily. ScienceDaily, 8 September 2005. <www.sciencedaily.com/releases/2005/09/050908080639.htm>.
Ohio State University. (2005, September 8). Nanotechnology Confronts The 'Bad Hair Day,' Tests New Conditioner. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2005/09/050908080639.htm
Ohio State University. "Nanotechnology Confronts The 'Bad Hair Day,' Tests New Conditioner." ScienceDaily. www.sciencedaily.com/releases/2005/09/050908080639.htm (accessed August 1, 2014).

Share This




More Matter & Energy News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins