Featured Research

from universities, journals, and other organizations

UCSD Study Of Nuclear Receptors Could Change Anti-inflammatory Treatments

Date:
September 10, 2005
Source:
University of California - San Diego
Summary:
Several nuclear receptor proteins appear to overlap in their ability to exert anti-inflammatory effects, according to new research by scientists at the University of California, San Diego (UCSD). Nuclear receptors are important drug targets for a number of diseases, for example, glucocorticoid receptors for asthma and arthritis. But use of drugs targeting these receptors is sometimes limited by unwelcome side effects. The new findings may suggest a way to overcome this obstacle.

Several nuclear receptor proteins appear to overlap in their ability toexert anti-inflammatory effects, according to new research byscientists at the University of California, San Diego (UCSD). Nuclearreceptors are important drug targets for a number of diseases, forexample, glucocorticoid receptors for asthma and arthritis. But use ofdrugs targeting these receptors is sometimes limited by unwelcome sideeffects. The new findings may suggest a way to overcome this obstacle.

Related Articles


In a paper being published in the September 9 issue of the journalCell, Christopher Glass, M.D., Ph.D., professor of cellular andmolecular medicine at the UCSD School of Medicine, and his colleaguesshow that three nuclear receptor proteins -- glucocorticoid, PPAR gammaand LXR -- can work together to repress the cellular responses tocertain kinds of pro-inflammatory molecular signaling. These nuclearreceptors are important in "turning off" inflammatory responses tobacteria or viruses and allowing the cells to return to a normal state.

"Basically, we are looking at a 'tuning system' to maintain aproper level of immunity, but without an inappropriate inflammatoryresponse that would contribute to a chronic disease state," Glass said.

The researchers have also, for the first time, identified on agenome-wide level how these proteins work to influence the body'sinflammatory response. By identifying the molecular mechanism by whicheach receptor inhibits particular genes involved in anti-viralresponses, more powerful drugs could be developed to fight immunediseases such as arteriosclerosis and arthritis, with fewer sideeffects.

"We now have a molecular understanding of why inflammatoryresponses caused by certain infections are sensitive to glucocorticoiddrugs for example, while others are resistant," said Glass. "Theseobservations further explain how drugs used to inhibit one type ofinflammation could basically cripple the immune system to respond tospecific viral infections and make that disease much worse."

Glass's studies of nuclear receptors have focused on theirregulation of gene expression in the macrophage, a basic cell thatrecognizes structures or patterns on pathogens that aren't present innormal cells. The macrophage is responsible for producing andresponding to hormone-like molecules that control inflammation --important for the understanding of immune diseases such asarteriosclerosis, psoriasis and rheumatoid arthritis that are triggeredby autoimmune responses. While macrophages and other immune cells areessential against infectious organisms, they can also promote chronicinflammatory diseases.

When the macrophage thinks it sees an infection, it "turns on"or expresses hundreds of genes, enabling the macrophage to communicatewith other cells and combat infection. In some diseases, however,certain protein complexes become modified and begin to look like theproteins associated with bacteria or viruses. The macrophagemisinterprets this pattern on a modified protein, which causes it toinitiate an inflammatory response. In this work, the UCSD team lookedat a number of pathogen-associated molecule patterns used to stimulatethe macrophage, with the long-term goal of finding a way to manageinflammation without compromising the immune system.

While it had been shown in past studies that the macrophageresponded to certain drugs, it was never studied on a genomic-widelevel how receptors actually did the job of inhibiting the macrophage'sinflammatory responses. The patterns reported in the paper suggest thateach of the receptors plays a slightly different role in how themacrophage mounts an inflammatory response, working in different butoverlapping ways.

The findings also have potential clinical significance inshowing how two or three nuclear receptors activated at the same timevery dramatically shut down inflammatory responses. This suggests thatthe drug that works with one particular receptor, but with negativeside effects, could be given at a lower dose along with different drugstargeting the other receptors. For example, one class of potentcorticoid drugs used to treat severe asthma has many negative sideeffects, including high blood pressure, diabetes and obesity.

"What is of particular interest in this study," said Glass, "isthat adding two drugs together could have a much more substantialinteraction while using much less of each drug. This could result inmuch better therapeutic results with fewer side effects. Theobservation that these proteins can function together opens up newavenues of clinical investigation into the treatment of diseases."

###

This work was supported by grants from the National Institutes ofHealth, the Stanford Reynolds Center and the Sandler Program for AsthmaResearch.

Contributors to this paper include Sumito Ogawa, Jean Lozach,and Gabriel Pascual, UCSD Department of Cellular and MolecularMedicine; Chris Benner, UCSD Department of Cellular and MolecularMedicine and Department of Bioengineering; Rajendra K. Tangirala andStefan Westin, X-Ceptor Therapeutics, San Diego; Alexander Hoffman,UCSD Department of Chemistry and Biochemistry; Shankar Subramaniam,UCSD Department of Bioengineering; Michael David, UCSD Department ofBiology; and Michael G. Rosenfeld, UCSD Department of Medicine, HowardHughes Medical Institute.


Story Source:

The above story is based on materials provided by University of California - San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University of California - San Diego. "UCSD Study Of Nuclear Receptors Could Change Anti-inflammatory Treatments." ScienceDaily. ScienceDaily, 10 September 2005. <www.sciencedaily.com/releases/2005/09/050910091114.htm>.
University of California - San Diego. (2005, September 10). UCSD Study Of Nuclear Receptors Could Change Anti-inflammatory Treatments. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2005/09/050910091114.htm
University of California - San Diego. "UCSD Study Of Nuclear Receptors Could Change Anti-inflammatory Treatments." ScienceDaily. www.sciencedaily.com/releases/2005/09/050910091114.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Nurse Nina Pham Cured of Ebola

Texas Nurse Nina Pham Cured of Ebola

AFP (Oct. 25, 2014) — An American nurse who contracted Ebola while caring for a Liberian patient in Texas has been declared free of the virus and will leave the hospital. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
Toxin-Packed Stem Cells Used To Kill Cancer

Toxin-Packed Stem Cells Used To Kill Cancer

Newsy (Oct. 25, 2014) — A Harvard University Research Team created genetically engineered stem cells that are able to kill cancer cells, while leaving other cells unharmed. Video provided by Newsy
Powered by NewsLook.com
IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins