Featured Research

from universities, journals, and other organizations

Like Fireflies And Pendulum Clocks, Nano-oscillators Synchronize Their Behavior

Date:
September 20, 2005
Source:
National Institute of Standards and Technology
Summary:
Like the flashing of fireflies and ticking of pendulum clocks, the signals emitted by multiple nanoscale oscillators can naturally synchronize under certain conditions, greatly amplifying their output power and stabilizing their signal pattern, according to scientists at the Commerce Department's National Institute of Standards and Technology (NIST). In the Sept. 15 issue of Nature, NIST scientists describe "locking" the dynamic magnetic properties of two nanoscale oscillators located 500 nanometers apart, boosting the power of the microwave signals given off by the device.

A simulation made with NIST micromagnetic software shows the interaction of "spin waves" emitted by two nano-oscillators that generate microwave signals. The ability of these tiny spintronic devices to spontaneously synchronize their emissions may lead to smaller, cheaper wireless communications components.
Credit: Image credit: National Institute of Standards and Technology

In the Sept. 15 issue of Nature,* NIST scientists describe "locking" the dynamic magnetic properties of two nanoscale oscillators located 500 nanometers apart, boosting the power of the microwave signals given off by the devices. While an individual oscillator has signal power of just 10 nanowatts, the output from multiple devices increases as the square of the number of devices involved. The NIST work suggests that small arrays of 10 nano-oscillators could produce signals of 1 microwatt or more, sufficient for practical use as reference oscillators or directional microwave transmitters and receivers in devices such as cell phones, radar systems and computer chips.

"These nanoscale oscillators could potentially replace much bulkier and expensive components in microwave circuits," says Matthew Pufall, one of the NIST researchers. "This is a significant advance in demonstrating the potential utility of these devices."

The NIST-designed oscillators consist of a sandwich of two magnetic films separated by a non-magnetic layer of copper. Passing an electrical current through the device causes the direction of its magnetization to switch back and forth rapidly, producing a microwave signal. The circular devices are 50 nanometers in diameter, about one-thousandth of the width of a human hair and hundreds of times smaller than the typical microwave generators in commercial use today. The devices are compatible with conventional semiconductor technology, which is expected to make them inexpensive to manufacture.

The type of signal locking observed at NIST was first described by the 17th-century Dutch scientist Christiaan Huygens, who found that two pendulum clocks mounted on the same wall synchronized their ticking, thanks to weak coupling of acoustic signals through the wall. This phenomenon also occurs in many biological systems, such as the synchronized flashing of fireflies, the singing of certain crickets, circadian rhythms in which biological cycles are locked to the sun, and heartbeat patterns linked to breathing speed. There are also examples in the physical sciences, such as the synchronization of the moon's rotation with respect to its orbit about the Earth.

Locking is already exploited in many technologies, such as wireless communications and certain types of antenna networks. For instance, in many telecommunications schemes, a receiver oscillator must lock to a signal transmitted by a sender.

The work described in Nature is an advance in the field of "spintronics," which takes advantage of the fact that the individual electrons in an electric current behave like minuscule bar magnets, each having a "spin" along a particular direction, analogous to a magnet's north or south pole. Conventional electronics, by contrast, relies on the electrons' charge. Spintronics is already exploited in read heads for computer hard-disk drives and may provide new functionalities in a variety of other electronic devices.

When an electric current passes through the NIST oscillators, the electrons in the current align their spins to match the orientation of the first magnetic layer in the device. When the now-aligned electrons flow through the second magnetic layer, the spin of the electrons is transferred to the film. The result is that the magnetization of the film oscillates much like a spinning top. The oscillation generates a microwave signal, which can be tuned from less than 5 gigahertz (5 billion oscillations a second) to more than 35 gigahertz by manipulating the current or an external magnetic field. In contrast, most cell phones transmit and receive signals at frequencies between 1 and 2 gigahertz.

Scientists long have known that an oscillator can be forced to sympathetically synchronize to an applied signal that is close to its own frequency. That is, if small, periodic "nudges" are applied to an oscillator, eventually it will synchronize to those nudges. In the latest NIST experiments, certain combinations of currents applied to both oscillators cause their respective frequencies to approach each other and eventually lock together.

In a related paper published Aug. 5 in Physical Review Letters,** the NIST research group demonstrated that nano-oscillators can be locked to an externally applied signal. This work also showed how to vary the phase of the oscillation (the positions of the peaks and troughs of the wave pattern), a technique used in radar and directional transmissions. "This work suggests the interesting possibility of using the oscillators for 'nano-wireless' communications within or between chips on a circuit board," says William Rippard, a member of the NIST group.

NIST scientists are still studying exactly why locking occurs between nano-oscillators. One possible mechanism is the emission of "spin waves," the magnetic analog of waves in the ocean. In magnetic systems these waves are alternating variations in the direction of the magnetization. The waves created by the two oscillators may overlap and synchronize. Alternatively, each oscillator can be thought of as a bar magnet spinning around its midpoint or end over end. Attractive and repulsive forces between the devices' poles may cause them to spin in a complementary pattern, thereby synchronizing the oscillations.

###

The spintronics work at NIST was funded in part by the Defense Advanced Research Projects Agency.

As an agency of the U.S. Department of Commerce's Technology Administration, NIST develops and promotes measurement, standards and technology to enhance productivity, facilitate trade and improve the quality of life.

* S.F. Kaka, M.R. Pufall, W.H. Rippard, T.J. Silva, and S.E. Russek. 2005. Mutual Phase-Locking of Microwave Spin Torque Nano-Oscillators. Nature. Sept. 15.

** W.H. Rippard, M.R. Pufall, S.F. Kaka, T.J. Silva, S.E. Russek, and J.A. Katine. 2005. Injection Locking and Phase Control of Spin Transfer Nano-Oscillators. Physical Review Letters. Aug. 5.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology. Note: Materials may be edited for content and length.


Cite This Page:

National Institute of Standards and Technology. "Like Fireflies And Pendulum Clocks, Nano-oscillators Synchronize Their Behavior." ScienceDaily. ScienceDaily, 20 September 2005. <www.sciencedaily.com/releases/2005/09/050918132111.htm>.
National Institute of Standards and Technology. (2005, September 20). Like Fireflies And Pendulum Clocks, Nano-oscillators Synchronize Their Behavior. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2005/09/050918132111.htm
National Institute of Standards and Technology. "Like Fireflies And Pendulum Clocks, Nano-oscillators Synchronize Their Behavior." ScienceDaily. www.sciencedaily.com/releases/2005/09/050918132111.htm (accessed April 24, 2014).

Share This



More Matter & Energy News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

UN Joint Mission Starts Removing Landmines in Cyprus

UN Joint Mission Starts Removing Landmines in Cyprus

AFP (Apr. 23, 2014) The UN mission in Cyprus (UNFICYP) led a mine clearance demonstration on Wednesday in the UN-controlled buffer zone where demining operations are being conducted near the Cypriot village of Mammari. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com
Air Force: $4.2B Saved from Grounding A-10s

Air Force: $4.2B Saved from Grounding A-10s

AP (Apr. 23, 2014) Speaking about the future of the United States Air Force, Chief of Staff Gen. Mark Welsh says the choice to divest the A-10 fleet was logical and least impactful. (April 23) Video provided by AP
Powered by NewsLook.com
Jets Fuel Jump in Boeing's Revenue

Jets Fuel Jump in Boeing's Revenue

Reuters - Business Video Online (Apr. 23, 2014) A sharp rise in revenue for commercial jets offset a decline in Boeing's defense business. And a big increase in deliveries lifted profitability. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Is North Korea Planning Nuclear Test #4?

Is North Korea Planning Nuclear Test #4?

Newsy (Apr. 22, 2014) South Korean officials say North Korea is preparing to conduct another nuclear test, but is Pyongyang just bluffing this time? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins